Michel Grandbois
Université de Sherbrooke
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michel Grandbois.
Journal of Histochemistry and Cytochemistry | 2000
Michel Grandbois; Wolfgang Dettmann; Martin Benoit; Hermann E. Gaub
SUMMARY We used an atomic force microscope (AFM) to produce an image of a mixed layer of group A and O red blood cells with a contrast based only on the measured strength of a specific receptor-ligand pair. The image was obtained by measuring and plotting for each image pixel the adhesion force between the mixed RBC layer and the AFM tip functionalized with Helix pomatia lectin. The high specificity of that lectin for the N-acetylgalactosamine-terminated glycolipids present in the membrane of group A RBCs enabled us to discriminate between the two cell populations and to produce an image based on affinity contrast. The rupture force of the adhesion events leading to the image formation were quantitatively analyzed and compared to rupture forces measured with the same AFM tip on N-acetylgalactosamine tethered to agarose beads. The mean rupture force was found to be 65 pN when measured on the group A RBCs and 35 pN on the agarose beads. These results show that the adhesion, mediated by only a few receptor-ligand pairs, produces sufficient contrast for the affinity image formation.
Biosensors and Bioelectronics | 2009
Vincent Chabot; Charles M. Cuerrier; Emanuel Escher; Vincent Aimez; Michel Grandbois; Paul G. Charette
We propose the combination of surface plasmon resonance (SPR) with living cells as a biosensing method. Our detection scheme is based on the premise that cellular activity induced by external agents is often associated with changes in cellular morphology, which in turn should lead to a variation of the effective refractive index at the interface between the cell membrane and the metal layer. We monitored surface plasmon resonance signals originating from a gold surface coated with cells on a custom apparatus after injection of various agents known to influence cellular activity and morphology. Specifically, we evaluated three types of stimulation: response to an endotoxin (lipopolysaccharides), a chemical toxin (sodium azide) and a physiological agonist (thrombin). A comparison with phase contrast microscopy reveals that SPR signal variations are associated with the induction of cell death for lipopolysaccharides treatment and a contraction of the cell body for sodium azide. Thrombin-induced cellular response shows a rapid decrease of the measured laser reflectance over 5min followed by a return to the original value. For this treatment, phase contrast micrographs relate the first phase of the SPR variation to cell contraction and increase of the intercellular gaps, whereas the recovery phase can be associated with a spreading of the cell on the sensing surface. Hence, the SPR signal is very consistent with the cellular response normally observed for these treatments. This confirms the validity of the biosensing method, which could be applied to a large variety of cellular responses involving shape remodeling induced by external agents.
Molecular Microbiology | 2008
Gabriel Mitchell; Charles-Antoine Lamontagne; Eric Brouillette; Gilles Grondin; Brian G. Talbot; Michel Grandbois; François Malouin
Genes encoding cell‐surface proteins regulated by SigB are stably expressed in Staphylococcus aureus small‐colony variants (SCVs) isolated from cystic fibrosis (CF) patients. Our hypothesis is that CF‐isolated SCVs are locked into a colonization state by sustaining the expression of adhesins such as fibronectin‐binding proteins (FnBPs) throughout growth. Force spectroscopy was used to study the fibronectin–FnBPs interaction among strains varying for their SigB activity. The fibronectin–FnBPs interaction was described by a strength of 1000 ± 400 pN (pulling rate of 2 μm s−1), an energetic barrier width of 0.6 ± 0.1 Å and an off‐rate below 2 × 10−4 s−1. A CF‐isolated SCV highly expressed fnbA throughout growth and showed a sustained capacity to bind fibronectin, whereas a prototypic strain showed a reduced frequency of fibronectin‐binding during the stationary growth phase when its fnbA gene was down‐regulated. Reduced expression of fnbA was observed in sigB mutants, which was associated with an overall decrease adhesion to fibronectin. These results suggest that the fibronectin–FnBPs interaction plays a role in the formation of a mechanically resistant adhesion of S. aureus to host tissues and supports the hypothesis that CF‐isolated SCVs are locked into a colonization state as a result of a sustained SigB activity.
Biochimica et Biophysica Acta | 1995
Kevin M. Maloney; Michel Grandbois; David W. Grainger; Christian Salesse; Karen A. Lewis; Mary F. Roberts
Phospholipase A2 (PLA2) catalyzed hydrolysis of asymmetric 1-caproyl-2-palmitoyl-phosphatidylcholine (6,16-PC) and 1-palmitoyl-2-caproyl-phosphatidylcholine (16,6-PC) lipid monolayers at the air/water interface was investigated. Surface pressure isotherms, surface potential and fluorescence microscopy at the air/water interface were used to characterize the asymmetric monolayer systems. Cobra (N. naja naja) and bee venom PLA2 exhibit hydrolytic activity towards 16,6-PC monolayers at all surface pressures up to monolayer collapse (37 mN m-1). Pancreatic PLA2 hydrolytic activity, however, was observed to be blocked at a lateral surface pressure of approx. 18 mN m-1 for both 6,16-PC and 16,6-PC monolayers. For 6,16-PC monolayers, fluorescence microscopy revealed that monolayer hydrolysis by PLA2 from cobra, bee, and bovine pancreatic sources all produced monolayer microstructuring. Fluorescence microscopy also showed that PLA2 is bound to these monolayer microstructures. Very little PLA2-induced microstructuring was observed to occur in 16,6-PC monolayer systems where caproic acid (C6) hydrolysis products were readily solubilized in the aqueous monolayer subphase. Surface potential measurements for 16,6-PC monolayer hydrolysis indicate dissolution of caproic acid reaction products into the monolayer subphase. Monolayer molecular area as a function of 6,16-PC monolayer hydrolysis time indicates the presence of monolayer-resident palmitic acid reaction products. With bovine serum albumin present in the monolayer subphase, PLA2 domain formation was observed only in hydrolyzed 6,16-PC monolayers. These results are consistent with laterally phase separated monolayer regions containing phospholipid and insoluble fatty acid reaction products from PLA2 monolayer hydrolysis electrostatically driving PLA2 adsorption to and enzyme domain formation at the heterogeneous, hydrolyzed lipid monolayer interface.
Physical Biology | 2007
Basarab Gabriel Hosu; Mingzhai Sun; Francoise Marga; Michel Grandbois; Gabor Forgacs
Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.
Pflügers Archiv: European Journal of Physiology | 2008
Charles-Antoine Lamontagne; Charles M. Cuerrier; Michel Grandbois
The exploration of molecular processes governing physiological functions has significantly benefited from the emergence of novel nanoscaled techniques. Atomic force microscopy in force measurement mode can be used to investigate a multitude of cellular events in individual living cells with great sensitivity. Precise regions of the plasma membrane can be examined in relation to particular signalling pathways activated by a mechanical stimulus. Similarly, subtle cellular movements induced by biochemical activation of specific membrane receptors can be detected in real time with excellent temporal and spatial resolution. The possibility to challenge locally and mechanically cell surface receptors also provides information on the control exerted by a cell over individual adhesion sites. Overall, this information is vital for an in-depth understanding of mechanisms related to cellular movement and morphological regulation. Lastly, atomic force microscope-based nanomanipulations on living cells have recently been proposed as a tool to influence and monitor cellular homeostasis by introducing specific molecular entities into or extracting them from the cytoplasm of individual cells. This review provides detailed examples on how such atomic force microscopy experiments can be conducted to investigate processes relevant to cell physiology.
Journal of Cellular Physiology | 2010
Veronica Bovenzi; Martin Savard; Josée Morin; Charles M. Cuerrier; Michel Grandbois
The morphological and functional integrity of the microcirculation is compromised in many cardiovascular diseases such as hypertension, diabetes, stroke, and sepsis. Angiotensin converting enzyme inhibitors (ACEi), which are known to favor bradykinin (BK) bioactivity by reducing its metabolism, may have a positive impact on preventing the microvascular structural rarefaction that occurs in these diseases. Our study was designed to test the hypothesis that BK, via B2 receptors (B2R), protects the viability of the microvascular endothelium exposed to the necrotic and apoptotic cell death inducers H2O2 and LPS independently of hemodynamics. Expression (RT‐PCR and radioligand binding) and functional (calcium mobilization with fura‐2AM, and p42/p44MAPK and Akt phosphorylation assays) experiments revealed the presence of functional B2R in pig cerebral microvascular endothelial cells (pCMVEC). In vitro results showed that the cytocidal effects of H2O2 and LPS on pCMVEC were significantly decreased by a BK pretreatment (MTT and crystal violet tests, annexin‐V staining/FACS analysis), which was countered by the B2R antagonist HOE 140. BK treatment coincided with enhanced expression of the cytoprotective proteins COX‐2, Bcl‐2, and Cu/ZnSOD. Ex vivo assays on rat brain explants showed that BK impeded (by ∼40%) H2O2‐induced microvascular degeneration (lectin‐FITC staining). The present study proposes a novel role for BK in microvascular endothelial protection, which may be pertinent to the complex mechanism of action of ACEi explaining their long‐term beneficial effects in maintaining vascular integrity. J. Cell. Physiol. 222:168–176, 2010.
Biochimica et Biophysica Acta | 2013
Nathalie Nguyen; Michael Biet; Elie Simard; Éric Béliveau; Nancy Francoeur; Gaétan Guillemette; Robert Dumaine; Michel Grandbois; Guylain Boulay
STIM1 plays a crucial role in Ca(2+) homeostasis, particularly in replenishing the intracellular Ca(2+) store following its depletion. In cardiomyocytes, the Ca(2+) content of the sarcoplasmic reticulum must be tightly controlled to sustain contractile activity. The presence of STIM1 in cardiomyocytes suggests that it may play a role in regulating the contraction of cardiomyocytes. The aim of the present study was to determine how STIM1 participates in the regulation of cardiac contractility. Atomic force microscopy revealed that knocking down STIM1 disrupts the contractility of cardiomyocyte-derived HL-1 cells. Ca(2+) imaging also revealed that knocking down STIM1 causes irregular spontaneous Ca(2+) oscillations in HL-1 cells. Action potential recordings further showed that knocking down STIM1 induces early and delayed afterdepolarizations. Knocking down STIM1 increased the peak amplitude and current density of T-type voltage-dependent Ca(2+) channels (T-VDCC) and shifted the activation curve toward more negative membrane potentials in HL-1 cells. Biotinylation assays revealed that knocking down STIM1 increased T-VDCC surface expression and co-immunoprecipitation assays suggested that STIM1 directly regulates T-VDCC activity. Thus, STIM1 is a negative regulator of T-VDCC activity and maintains a constant cardiac rhythm by preventing a Ca(2+) overload that elicits arrhythmogenic events.
PLOS ONE | 2015
Gregory Lacraz; André-Jean Rouleau; Vanessa Couture; Thomas Söllrald; Geneviève Drouin; Noémie Veillette; Michel Grandbois; Guillaume Grenier
Background Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs). Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM), which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential. Results We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM) indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers. Conclusions These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment.
Colloids and Surfaces B: Biointerfaces | 2011
Marta Kocun; Michel Grandbois; Louis A. Cuccia
Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications.