Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel Henry is active.

Publication


Featured researches published by Michel Henry.


Science | 2008

Evidence for Editing of Human Papillomavirus DNA by APOBEC3 in Benign and Precancerous Lesions

Jean-Pierre Vartanian; Denise Guetard; Michel Henry; Simon Wain-Hobson

Cytidine deaminases of the APOBEC3 family all have specificity for single-stranded DNA, which may become exposed during replication or transcription of double-stranded DNA. Three human APOBEC3A (hA3A), hA3B, and hA3H genes are expressed in keratinocytes and skin, leading us to determine whether genetic editing of human papillomavirus (HPV) DNA occurred. In a study of HPV1a plantar warts and HPV16 precancerous cervical biopsies, hyperedited HPV1a and HPV16 genomes were found. Strictly analogous results were obtained from transfection experiments with HPV plasmid DNA and the three nuclear localized enzymes: hA3A, hA3C, and hA3H. Thus, stochastic or transient overexpression of APOBEC3 genes may expose the genome to a broad spectrum of mutations that could influence the development of tumors.


PLOS Pathogens | 2010

Massive APOBEC3 Editing of Hepatitis B Viral DNA in Cirrhosis

Jean Pierre Vartanian; Michel Henry; Agnès Marchio; Rodolphe Suspène; Marie Ming Aynaud; Denise Guetard; Minerva Cervantes-Gonzalez; Carlo Battiston; Vincenzo Mazzaferro; Pascal Pineau; Anne Dejean; Simon Wain-Hobson

DNA viruses, retroviruses and hepadnaviruses, such as hepatitis B virus (HBV), are vulnerable to genetic editing of single stranded DNA by host cell APOBEC3 (A3) cytidine deaminases. At least three A3 genes are up regulated by interferon-α in human hepatocytes while ectopic expression of activation induced deaminase (AICDA), an A3 paralog, has been noted in a variety of chronic inflammatory syndromes including hepatitis C virus infection. Yet virtually all studies of HBV editing have confined themselves to analyses of virions from culture supernatants or serum where the frequency of edited genomes is generally low (≤10−2). We decided to look at the nature and frequency of HBV editing in cirrhotic samples taken during removal of a primary hepatocellular carcinoma. Forty-one cirrhotic tissue samples (10 alcoholic, 10 HBV+, 11 HBV+HCV+ and 10 HCV+) as well as 4 normal livers were studied. Compared to normal liver, 5/7 APOBEC3 genes were significantly up regulated in the order: HCV±HBV>HBV>alcoholic cirrhosis. A3C and A3D were up regulated for all groups while the interferon inducible A3G was over expressed in virus associated cirrhosis, as was AICDA in ∼50% of these HBV/HCV samples. While AICDA can indeed edit HBV DNA ex vivo, A3G is the dominant deaminase in vivo with up to 35% of HBV genomes being edited. Despite these highly deleterious mutant spectra, a small fraction of genomes survive and contribute to loss of HBeAg antigenemia and possibly HBsAg immune escape. In conclusion, the cytokine storm associated with chronic inflammatory responses to HBV and HCV clearly up regulates a number of A3 genes with A3G clearly being a major restriction factor for HBV. Although the mutant spectrum resulting from A3 editing is highly deleterious, a very small part, notably the lightly edited genomes, might help the virus evolve and even escape immune responses.


Journal of General Virology | 2002

Sustained G → A hypermutation during reverse transcription of an entire human immunodeficiency virus type 1 strain vau group O genome

Jean-Pierre Vartanian; Michel Henry; Simon Wain-Hobson

Two full-length human immunodeficiency virus type 1 O sequences are described, one of which was hypermutated in all regions of the genome. This indicates that the intracellular [dTTP]/[dCTP] bias conducive to G-->A hypermutation may be sustained throughout the synthesis of minus-strand DNA. In turn, this suggests the possibility of mutation of host sequences.


PLOS ONE | 2009

Genetic Editing of HBV DNA by Monodomain Human APOBEC3 Cytidine Deaminases and the Recombinant Nature of APOBEC3G

Michel Henry; Denise Guetard; Rodolphe Suspène; Christophe Rusniok; Simon Wain-Hobson; Jean Pierre Vartanian

Hepatitis B virus (HBV) DNA is vulnerable to editing by human cytidine deaminases of the APOBEC3 (A3A-H) family albeit to much lower levels than HIV cDNA. We have analyzed and compared HBV editing by all seven enzymes in a quail cell line that does not produce any endogenous DNA cytidine deaminase activity. Using 3DPCR it was possible to show that all but A3DE were able to deaminate HBV DNA at levels from 10−2 to 10−5 in vitro, with A3A proving to be the most efficient editor. The amino terminal domain of A3G alone was completely devoid of deaminase activity to within the sensitivity of 3DPCR (∼10−4 to 10−5). Detailed analysis of the dinucleotide editing context showed that only A3G and A3H have strong preferences, notably CpC and TpC. A phylogenic analysis of A3 exons revealed that A3G is in fact a chimera with the first two exons being derived from the A3F gene. This might allow co-expression of the two genes that are able to restrict HIV-1Δvif efficiently.


Journal of General Virology | 1999

MANGANESE CATIONS INCREASE THE MUTATION RATE OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 EX VIVO

Jean-Pierre Vartanian; Monica Sala; Michel Henry; Simon Wain-Hobson; Andreas Meyerhans

Human immunodeficiency virus (HIV) reverse transcription is an error-prone process with an overall mutation rate of approximately 3.4 x 10(-5) per base per replication cycle. This rate can be modulated by changes in different components of the retrotranscription reaction. In particular, in vitro substitution of magnesium cations (Mg2+) by manganese cations (Mn2+) has been shown to increase misincorporation of deoxynucleotide triphosphates (dNTPs) and to alter substrate specificity. Here, it is shown that Mn2+ also increases the HIV mutation rate ex vivo. Treatment of permissive cells with Mn2+ and subsequent HIV infection resulted in at least 6-fold and 10-fold increases in the mutant and mutation frequencies respectively, thus illustrating a further example of how to influence HIV genetic variation.


Nucleic Acids Research | 2008

Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs

Rodolphe Suspène; Myrtille Renard; Michel Henry; Denise Guetard; David Puyraimond-Zemmour; Agnès Billecocq; Michèle Bouloy; Frédéric Tangy; Jean-Pierre Vartanian; Simon Wain-Hobson

DNA complementarity is expressed by way of three hydrogen bonds for a G:C base pair and two for A:T. As a result, careful control of the denaturation temperature of PCR allows selective amplification of AT-rich alleles. Yet for the same reason, the converse is not possible, selective amplification of GC-rich alleles. Inosine (I) hydrogen bonds to cytosine by two hydrogen bonds while diaminopurine (D) forms three hydrogen bonds with thymine. By substituting dATP by dDTP and dGTP by dITP in a PCR reaction, DNA is obtained in which the natural hydrogen bonding rule is inversed. When PCR is performed at limiting denaturation temperatures, it is possible to recover GC-rich viral genomes and inverted Alu elements embedded in cellular mRNAs resulting from editing by dsRNA dependent host cell adenosine deaminases. The editing of Alu elements in cellular mRNAs was strongly enhanced by type I interferon induction indicating a novel link mRNA metabolism and innate immunity.


Journal of Molecular Biology | 2010

APOBEC1 and APOBEC3 Cytidine Deaminases as Restriction Factors for Hepadnaviral Genomes in Non-Humans In Vivo

Myrtille Renard; Michel Henry; Denise Guetard; Jean-Pierre Vartanian; Simon Wain-Hobson

Reverse transcription of the hepadnavirus RNA pre-genome means that nascent cDNA may be vulnerable to genetic editing by host cell APOBEC cytidine deaminases that have specificity single-stranded DNA as substrate. Hepatitis B virus (HBV) is particularly vulnerable to editing by APOBEC3G (hA3G) in late-stage disease where up to 35% of genomes can be edited. Yet, the organization of the A3 locus varies considerably among mammals with a single gene for the mouse and seven genes for Old and New World monkeys, which suggests that the outcome may be very variable for other natural hepadnavirus infections. In addition, there is the powerful mouse transgenic model of HBV replication (mHBV) that has proved to be immensely useful in understanding HBV immunopathogenesis. Here, we show that mHBV is edited in vivo by mAPOBEC1 (mA1) and not mAPOBEC3 (mA3), which follows from the fact that unlike humans, the mA1 gene is highly expressed in the liver. For woodchuck hepatitis virus, an mA3 ortholog is probably operative. For HBV-infected tree shrew primary liver cultures, the editing profile more resembles that observed in humans in keeping with fact that this species belongs to the order closest to Primates. There seems to be more genetic editing in liver or cell-associated genomes than serum or culture supernatants, suggesting that too much editing of virion cDNA might impede completion of DNA synthesis.


Retrovirology | 2009

Human APOBEC1 cytidine deaminase edits HBV DNA

Minerva Cervantes Gonzalez; Rodolphe Suspène; Michel Henry; Denise Guetard; Simon Wain-Hobson; Jean-Pierre Vartanian

Retroviruses, hepadnaviruses, and some other retroelements are vulnerable to editing by single stranded DNA cytidine deaminases. Of the eleven human genes encoding such enzymes, eight have demonstrable enzymatic activity. Six of seven human APOBEC3 are able to hyperedit HBV DNA, frequently on both strands. Although human APOBEC1 (hA1) is not generally expressed in normal liver, hA1 can edit single stranded DNA in a variety of experimental assays. The possibility of ectopic expression of hA1 in vivo cannot be ruled out and interestingly, transgenic mice with A1 expressed under a liver specific promoter develop hepatocellular carcinoma. The impact of hA1 on HBV in tissue culture is varied with reports noting either reduced DNA synthesis or not, with cytidine deamination taking a low profile. We sought to examine the hA1 editing activity on replicating HBV. Using highly sensitive 3DPCR it was possible to show that hA1 edits the HBV minus DNA strand as efficiently as hA3G, considered the reference deaminase for HIV and HBV. The dinucleotide specificity of editing was unique among human cytidine deaminases providing a hallmark of use in a posteriori analyses of in vivo edited genomes. Analysis of sequences derived from the serum of two chronic carriers, indicated that hA1 explained only a small fraction of edited HBV genomes. By contrast, several human APOBEC3 deaminases were active including hA3G.


Journal of Virology | 2011

Lethal mutagenesis of foot-and-mouth disease virus involves shifts in sequence space

Celia Perales; Michel Henry; Esteban Domingo; Simon Wain-Hobson; Jean-Pierre Vartanian

ABSTRACT Lethal mutagenesis or virus transition into error catastrophe is an antiviral strategy that aims at extinguishing a virus by increasing the viral mutation rates during replication. The molecular basis of lethal mutagenesis is largely unknown. Previous studies showed that a critical substitution in the foot-and-mouth disease virus (FMDV) polymerase was sufficient to allow the virus to escape extinction through modulation of the transition types induced by the purine nucleoside analogue ribavirin. This substitution was not detected in mutant spectra of FMDV populations that had not replicated in the presence of ribavirin, using standard molecular cloning and nucleotide sequencing. Here we selectively amplify and analyze low-melting-temperature cDNA duplexes copied from FMDV genome populations passaged in the absence or presence of ribovirin Hypermutated genomes with high frequencies of A and U were present in both ribavirin -treated and untreated populations, but the major effect of ribavirin mutagenesis was to accelerate the occurrence of AU-rich mutant clouds during the early replication rounds of the virus. The standard FMDV quasispecies passaged in the absence of ribavirin included the salient transition-modulating, ribavirin resistance mutation, whose frequency increased in populations treated with ribavirin. Thus, even nonmutagenized FMDV quasispecies include a deep, mutationally biased portion of sequence space, in support of the view that the virus replicates close to the error threshold for maintenance of genetic information.


PLOS ONE | 2012

Evolution of the Primate APOBEC3A Cytidine Deaminase Gene and Identification of Related Coding Regions

Michel Henry; Christophe Terzian; Martine Peeters; Simon Wain-Hobson; Jean-Pierre Vartanian

The APOBEC3 gene cluster encodes six cytidine deaminases (A3A-C, A3DE, A3F-H) with single stranded DNA (ssDNA) substrate specificity. For the moment A3A is the only enzyme that can initiate catabolism of both mitochondrial and nuclear DNA. Human A3A expression is initiated from two different methionine codons M1 or M13, both of which are in adequate but sub-optimal Kozak environments. In the present study, we have analyzed the genetic diversity among A3A genes across a wide range of 12 primates including New World monkeys, Old World monkeys and Hominids. Sequence variation was observed in exons 1–4 in all primates with up to 31% overall amino acid variation. Importantly for 3 hominids codon M1 was mutated to a threonine codon or valine codon, while for 5/12 primates strong Kozak M1 or M13 codons were found. Positive selection was apparent along a few branches which differed compared to positive selection in the carboxy-terminal of A3G that clusters with A3A among human cytidine deaminases. In the course of analyses, two novel non-functional A3A-related fragments were identified on chromosome 4 and 8 kb upstream of the A3 locus. This qualitative and quantitative variation among primate A3A genes suggest that subtle differences in function might ensue as more light is shed on this increasingly important enzyme.

Collaboration


Dive into the Michel Henry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renaud Mahieux

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Plikat

University of Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge