Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodolphe Suspène is active.

Publication


Featured researches published by Rodolphe Suspène.


Journal of Virology | 2006

Restriction of Foamy Viruses by APOBEC Cytidine Deaminases

Frédéric Delebecque; Rodolphe Suspène; Sara Calattini; Nicoletta Casartelli; Ali Saïb; Alain Froment; Simon Wain-Hobson; Antoine Gessain; Jean-Pierre Vartanian; Olivier Schwartz

ABSTRACT Foamy viruses (FVs) are nonpathogenic retroviruses infecting many species of mammals, notably primates, cattle, and cats. We have examined whether members of the apolipoprotein B-editing catalytic polypeptide-like subunit (APOBEC) family of antiviral cytidine deaminases restrict replication of simian FV. We show that human APOBEC3G is a potent inhibitor of FV infectivity in cell culture experiments. This antiviral activity is associated with cytidine editing of the viral genome. Both molecular FV clones and primary uncloned viruses were susceptible to APOBEC3G, and viral infectivity was also inhibited by murine and simian APOBEC3G homologues, as well as by human APOBEC3F. Wild-type and bet-deleted viruses were similarly sensitive to this antiviral activity, suggesting that Bet does not significantly counteract APOBEC proteins. Moreover, we did not detect FV sequences that may have been targeted by APOBEC in naturally infected macaques, but we observed a few G-to-A substitutions in humans that have been accidentally contaminated by simian FV. In infected hosts, the persistence strategy employed by FV might be based on low levels of replication, as well as avoidance of cells expressing large amounts of active cytidine deaminases.


PLOS Pathogens | 2010

Massive APOBEC3 Editing of Hepatitis B Viral DNA in Cirrhosis

Jean Pierre Vartanian; Michel Henry; Agnès Marchio; Rodolphe Suspène; Marie Ming Aynaud; Denise Guetard; Minerva Cervantes-Gonzalez; Carlo Battiston; Vincenzo Mazzaferro; Pascal Pineau; Anne Dejean; Simon Wain-Hobson

DNA viruses, retroviruses and hepadnaviruses, such as hepatitis B virus (HBV), are vulnerable to genetic editing of single stranded DNA by host cell APOBEC3 (A3) cytidine deaminases. At least three A3 genes are up regulated by interferon-α in human hepatocytes while ectopic expression of activation induced deaminase (AICDA), an A3 paralog, has been noted in a variety of chronic inflammatory syndromes including hepatitis C virus infection. Yet virtually all studies of HBV editing have confined themselves to analyses of virions from culture supernatants or serum where the frequency of edited genomes is generally low (≤10−2). We decided to look at the nature and frequency of HBV editing in cirrhotic samples taken during removal of a primary hepatocellular carcinoma. Forty-one cirrhotic tissue samples (10 alcoholic, 10 HBV+, 11 HBV+HCV+ and 10 HCV+) as well as 4 normal livers were studied. Compared to normal liver, 5/7 APOBEC3 genes were significantly up regulated in the order: HCV±HBV>HBV>alcoholic cirrhosis. A3C and A3D were up regulated for all groups while the interferon inducible A3G was over expressed in virus associated cirrhosis, as was AICDA in ∼50% of these HBV/HCV samples. While AICDA can indeed edit HBV DNA ex vivo, A3G is the dominant deaminase in vivo with up to 35% of HBV genomes being edited. Despite these highly deleterious mutant spectra, a small fraction of genomes survive and contribute to loss of HBeAg antigenemia and possibly HBsAg immune escape. In conclusion, the cytokine storm associated with chronic inflammatory responses to HBV and HCV clearly up regulates a number of A3 genes with A3G clearly being a major restriction factor for HBV. Although the mutant spectrum resulting from A3 editing is highly deleterious, a very small part, notably the lightly edited genomes, might help the virus evolve and even escape immune responses.


Nucleic Acids Research | 2006

Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication

Rodolphe Suspène; Christophe Rusniok; Jean-Pierre Vartanian; Simon Wain-Hobson

The human immunodeficiency virus (HIV) Vif protein blocks incorporation of two host cell cytidine deaminases, APOBEC3F and 3G, into the budding virion. Not surprisingly, on a vif background nascent minus strand DNA can be extensively edited leaving multiple uracil residues. Editing occurs preferentially in the context of TC (GA on the plus strand) and CC (GG) depending on the enzyme. To explore the distribution of APOBEC3F and –3G editing across the genome, a product/substrate ratio (AA + AG)/(GA + GG) was computed for a series of 30 edited genomes present in the data bases. Two highly polarized gradients were noted each with maxima just 5′ to the central polypurine tract (cPPT) and LTR proximal polypurine tract (3′PPT). The gradients are in remarkable agreement with the time the minus strand DNA remains single stranded. In vitro analyses of APOBEC3G deamination of nascent cDNA spanning the two PPTs showed no pronounced dependence on the PPT RNA:DNA heteroduplex ruling out the competing hypothesis of a PPT orientation effect. The degree of hypermutation varied smoothly among genomes indicating that the number of APOBEC3 molecules packaged varied considerably.


Journal of Virology | 2011

Genetic Editing of Herpes Simplex Virus 1 and Epstein-Barr Herpesvirus Genomes by Human APOBEC3 Cytidine Deaminases in Culture and In Vivo

Rodolphe Suspène; Marie-Ming Aynaud; Stefanie Koch; David Pasdeloup; Marc Labetoulle; Barbara Gaertner; Jean-Pierre Vartanian; Andreas Meyerhans; Simon Wain-Hobson

ABSTRACT Human APOBEC3 cytidine deaminases target and edit single-stranded DNA, which can be of viral, mitochondrial, or nuclear origin. Retrovirus genomes, such as human immunodeficiency virus (HIV) genomes deficient in the vif gene and the hepatitis B virus genome, are particularly vulnerable. The genomes of some DNA viruses, such as human papillomaviruses, can be edited in vivo and in transfection experiments. Accordingly, herpesviruses should be no exception. This is indeed the case for herpes simplex virus 1 (HSV-1) in tissue culture, where APOBEC3C (A3C) overexpression can reduce virus titers and the particle/PFU ratio ∼10-fold. Nonetheless, A3A, A3G, and AICDA can edit what is presumably a small fraction of HSV genomes in an experimental setting without seriously impacting the viral titer. Hyperediting was found in HSV genomes recovered from 4/8 uncultured buccal lesions. The phenomenon is not restricted to HSV, since hyperedited Epstein-Barr virus (EBV) genomes were readily recovered from 4/5 established cell lines, indicating that episomes are vulnerable to editing. These findings suggest that the widely expressed A3C cytidine deaminase can function as a restriction factor for some human herpesviruses. That the A3C gene is not induced by type I interferons begs the question whether some herpesviruses encode A3C antagonists.


PLOS ONE | 2009

Genetic Editing of HBV DNA by Monodomain Human APOBEC3 Cytidine Deaminases and the Recombinant Nature of APOBEC3G

Michel Henry; Denise Guetard; Rodolphe Suspène; Christophe Rusniok; Simon Wain-Hobson; Jean Pierre Vartanian

Hepatitis B virus (HBV) DNA is vulnerable to editing by human cytidine deaminases of the APOBEC3 (A3A-H) family albeit to much lower levels than HIV cDNA. We have analyzed and compared HBV editing by all seven enzymes in a quail cell line that does not produce any endogenous DNA cytidine deaminase activity. Using 3DPCR it was possible to show that all but A3DE were able to deaminate HBV DNA at levels from 10−2 to 10−5 in vitro, with A3A proving to be the most efficient editor. The amino terminal domain of A3G alone was completely devoid of deaminase activity to within the sensitivity of 3DPCR (∼10−4 to 10−5). Detailed analysis of the dinucleotide editing context showed that only A3G and A3H have strong preferences, notably CpC and TpC. A phylogenic analysis of A3 exons revealed that A3G is in fact a chimera with the first two exons being derived from the A3F gene. This might allow co-expression of the two genes that are able to restrict HIV-1Δvif efficiently.


Nature Communications | 2014

A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage

Vincent Caval; Rodolphe Suspène; Milana Shapira; Jean-Pierre Vartanian; Simon Wain-Hobson

Human APOBEC3A (A3A) cytidine deaminase is a host enzyme that can introduce mutations into chromosomal DNA. As APOBEC3B (A3B) encodes a C-terminal catalytic domain ~91% identical to A3A, we examined its genotoxic potential as well as that of a highly prevalent chimaeric A3A-A3B deletion allele (ΔA3B), which is linked to a higher odds ratio of developing breast, ovarian and liver cancer. Interestingly, breast cancer genomes from ΔA3B(-/-) patients show a higher overall mutation burden. Here it is shown that germline A3B can hypermutate nuclear DNA, albeit less efficiently than A3A. Chimaeric A3A mRNA resulting from ΔA3B was more stable, resulting in higher intracellular A3A levels and greater DNA damage. The cancer burden implied by the higher A3A levels could be considerable given the high penetration of the ΔA3B allele in South East Asia.


PLOS ONE | 2013

Human APOBEC3A Isoforms Translocate to the Nucleus and Induce DNA Double Strand Breaks Leading to Cell Stress and Death

Bianka Mussil; Rodolphe Suspène; Marie-Ming Aynaud; Anne Gauvrit; Jean-Pierre Vartanian; Simon Wain-Hobson

Human APOBEC3 enzymes deaminate single stranded DNA. At least five can deaminate mitochondrial DNA in the cytoplasm, while three can deaminate viral DNA in the nucleus. However, only one, APOBEC3A, can hypermutate genomic DNA. We analysed the distribution and function of the two APOBEC3A isoforms p1 and p2 in transfected cell lines. Both can translocate to the nucleus and hypermutate CMYC DNA and induce DNA double strand breaks as visualized by the detection of ©H2AX or Chk2. APOBEC3A induced G1 phase cell cycle arrest and triggered several members of the intrinsic apoptosis pathway. Activation of purified human CD4+ T lymphocytes with PHA, IL2 and interferon α resulted in C->T hypermutation of genomic DNA and double stranded breaks suggesting a role for APOBEC3A in pro-inflammatory conditions. As chronic inflammation underlies many diseases including numerous cancers, it is possible that APOBEC3A induction may generate many of the lesions typical of a cancer genome.


Journal of Biological Chemistry | 2012

Human Tribbles 3 Protects Nuclear DNA from Cytidine Deamination by APOBEC3A

Marie-Ming Aynaud; Rodolphe Suspène; Pierre-Olivier Vidalain; Bianka Mussil; Denise Guetard; Frédéric Tangy; Simon Wain-Hobson; Jean-Pierre Vartanian

Background: APOBEC3A can hyperedit nuclear DNA and generates double-stranded DNA breaks. Results: TRIB3 is an interactor for APOBEC3A and APOBEC3C. TRIB3 is a negative regulator of APOBEC3A. Conclusion: Through its control of APOBEC3A, TRIB3 is another guardian of genome integrity. Significance: TRIB3 is part of protein network that involves cell cycle control, cell survival, DNA repair, and genome stability. The human polydeoxynucleotide cytidine deaminases APOBEC3A, APOBEC3C, and APOBEC3H are capable of mutating viral DNA in the nucleus, whereas APOBEC3A alone efficiently edits nuclear DNA. Deamination is rapidly followed by excision of uracil residues and can lead to double-stranded breaks. It is not known to which protein networks these DNA mutators belong. Using a yeast two-hybrid screen, we identified the human homolog of Drosophila Tribbles 3, TRIB3, as an interactor for APOBEC3A and APOBEC3C. The interaction was confirmed by co-affinity purification. Co-transfection of APOBEC3A with a TRIB3 expression vector reduced nuclear DNA editing whereas siRNA knockdown of TRIB3 increased the levels of nuclear DNA editing, indicating that TRIB3 functioned as a repressor of A3A. It also repressed A3A-associated γH2AX positive double-stranded breaks. The interaction results in degradation of A3A in a proteasome-independent manner. TRIB3 has been linked to cancer and via its own interactors and links the A3A DNA mutators to the Rb-BRCA1-ATM network. TRIB3 emerges as an important guardian of genome integrity.


Nucleic Acids Research | 2008

Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs

Rodolphe Suspène; Myrtille Renard; Michel Henry; Denise Guetard; David Puyraimond-Zemmour; Agnès Billecocq; Michèle Bouloy; Frédéric Tangy; Jean-Pierre Vartanian; Simon Wain-Hobson

DNA complementarity is expressed by way of three hydrogen bonds for a G:C base pair and two for A:T. As a result, careful control of the denaturation temperature of PCR allows selective amplification of AT-rich alleles. Yet for the same reason, the converse is not possible, selective amplification of GC-rich alleles. Inosine (I) hydrogen bonds to cytosine by two hydrogen bonds while diaminopurine (D) forms three hydrogen bonds with thymine. By substituting dATP by dDTP and dGTP by dITP in a PCR reaction, DNA is obtained in which the natural hydrogen bonding rule is inversed. When PCR is performed at limiting denaturation temperatures, it is possible to recover GC-rich viral genomes and inverted Alu elements embedded in cellular mRNAs resulting from editing by dsRNA dependent host cell adenosine deaminases. The editing of Alu elements in cellular mRNAs was strongly enhanced by type I interferon induction indicating a novel link mRNA metabolism and innate immunity.


PLOS ONE | 2013

Efficient Deamination of 5-Methylcytidine and 5-Substituted Cytidine Residues in DNA by Human APOBEC3A Cytidine Deaminase

Rodolphe Suspène; Marie-Ming Aynaud; Jean-Pierre Vartanian; Simon Wain-Hobson

Deamination of 5-methylcytidine (5MeC) in DNA results in a G:T mismatch unlike cytidine (C) deamination which gives rise to a G:U pair. Deamination of C was generally considered to arise spontaneously. It is now clear that human APOBEC3A (A3A), a polynucleotide cytidine deaminase (PCD) with specificity for single stranded DNA, can extensively deaminate human nuclear DNA. It is shown here that A3A among all human PCDs can deaminate 5-methylcytidine in a variety of single stranded DNA substrates both in vitro and in transfected cells almost as efficiently as cytidine itself. This ability of A3A to accommodate 5-methyl moiety extends to other small and physiologically relevant substituted cytidine bases such as 5-hydroxy and 5-bromocytidine. As 5MeCpG deamination hotspots characterize many genes associated with cancer it is plausible that A3A is a major player in the onset of cancer.

Collaboration


Dive into the Rodolphe Suspène's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Henry

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Henry

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge