Michela Clerici
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michela Clerici.
Nature Cell Biology | 2012
Marzia Fumagalli; Francesca Rossiello; Michela Clerici; Sara Barozzi; Davide Cittaro; Jessica Kaplunov; Gabriele Bucci; Miryana Dobreva; Valentina Matti; Christian M. Beauséjour; Utz Herbig; Maria Pia Longhese; Fabrizio d'Adda di Fagagna
The DNA-damage response (DDR) arrests cell-cycle progression until damage is removed. DNA-damage-induced cellular senescence is associated with persistent DDR. The molecular bases that distinguish transient from persistent DDR are unknown. Here we show that a large fraction of exogenously induced persistent DDR markers is associated with telomeric DNA in cultured cells and mammalian tissues. In yeast, a chromosomal DNA double-strand break next to a telomeric sequence resists repair and impairs DNA ligase 4 recruitment. In mammalian cells, ectopic localization of telomeric factor TRF2 next to a double-strand break induces persistent DNA damage and DDR. Linear, but not circular, telomeric DNA or scrambled DNA induces a prolonged checkpoint in normal cells. In terminally differentiated tissues of old primates, DDR markers accumulate at telomeres that are not critically short. We propose that linear genomes are not uniformly reparable and that telomeric DNA tracts, if damaged, are irreparable and trigger persistent DDR and cellular senescence.
Journal of Biological Chemistry | 2005
Michela Clerici; Davide Mantiero; Giovanna Lucchini; Maria Pia Longhese
When eukaryotic chromosomes undergo double strand breaks (DSBs), several evolutionarily conserved proteins, among which the MRX complex, are recruited to the break site, leading to checkpoint activation and DNA repair. The function of the Saccharomyces cerevisiae Sae2 protein, which is known to work together with the MRX complex in meiotic DSB processing and in specific mitotic DSB repair events, is only beginning to be elucidated. Here we provide new insights into the role of Sae2 in mitotic DSB repair. We show that repair by single strand annealing of a single DSB, which is generated by the HO endonuclease between direct repeats, is defective both in the absence of Sae2 and in the presence of the hypomorphic rad50s allele altering the Rad50 subunit of MRX. Moreover, SAE2 overexpression partially suppresses the rad50s single strand annealing repair defects, suggesting that the latter might arise from defective MRX-Sae2 interactions. Finally, SAE2 deletion slows down resection of an HO-induced DSB and impairs DSB end bridging. Thus, Sae2 participates in DSB single strand annealing repair by ensuring both resection and intrachromosomal association of the broken ends.
EMBO Reports | 2006
Michela Clerici; Davide Mantiero; Giovanna Lucchini; Maria Pia Longhese
Double‐strand breaks (DSBs) elicit a DNA damage response, resulting in checkpoint‐mediated cell‐cycle delay and DNA repair. The Saccharomyces cerevisiae Sae2 protein is known to act together with the MRX complex in meiotic DSB processing, as well as in DNA damage response during the mitotic cell cycle. Here, we report that cells lacking Sae2 fail to turn off both Mec1‐ and Tel1‐dependent checkpoints activated by a single irreparable DSB, and delay Mre11 foci disassembly at DNA breaks, indicating that Sae2 may negatively regulate checkpoint signalling by modulating MRX association at damaged DNA. Consistently, high levels of Sae2 prevent checkpoint activation and impair MRX foci formation in response to unrepaired DSBs. Mec1‐ and Tel1‐dependent Sae2 phosphorylation is necessary for these Sae2 functions, suggesting that the two kinases, once activated, may regulate checkpoint switch off through Sae2‐mediated inhibition of MRX signalling.
EMBO Reports | 2008
Michela Clerici; Davide Mantiero; Ilaria Guerini; Giovanna Lucchini; Maria Pia Longhese
DNA double‐strand breaks (DSBs) are repaired by non‐homologous end joining (NHEJ) or homologous recombination (HR). HR requires 5′ DSB end degradation that occurs in the presence of cyclin‐dependent kinase (CDK) activity. Here, we show that a lack of any of the NHEJ proteins Yku (Yku70–Yku80), Lif1 or DNA ligase IV (Dnl4) increases 5′ DSB end degradation in G1 phase, with ykuΔ cells showing the strongest effect. This increase depends on MRX, the recruitment of which at DSBs is enhanced in ykuΔ G1 cells. DSB processing in G2 is not influenced by the absence of Yku, but it is delayed by Yku overproduction, which also decreases MRX loading on DSBs. Moreover, DSB resection in ykuΔ cells occurs independently of CDK activity, suggesting that it might be promoted by CDK‐dependent inhibition of Yku.
Molecular and Cellular Biology | 2001
Paciotti; Michela Clerici; Scotti M; Giovanna Lucchini; Maria Pia Longhese
ABSTRACT DNA damage checkpoints lead to the inhibition of cell cycle progression following DNA damage. The Saccharomyces cerevisiae Mec1 checkpoint protein, a phosphatidylinositol kinase-related protein, is required for transient cell cycle arrest in response to DNA damage or DNA replication defects. We show thatmec1 kinase-deficient (mec1kd) mutants are indistinguishable from mec1Δ cells, indicating that the Mec1 conserved kinase domain is required for all known Mec1 functions, including cell viability and proper DNA damage response. Mec1kd variants maintain the ability to physically interact with both Ddc2 and wild-type Mec1 and cause dominant checkpoint defects when overproduced in MEC1 cells, impairing the ability of cells to slow down S phase entry and progression after DNA damage in G1 or during S phase. Conversely, an excess of Mec1kd inMEC1 cells does not abrogate the G2/M checkpoint, suggesting that Mec1 functions required for response to aberrant DNA structures during specific cell cycle stages can be separable. In agreement with this hypothesis, we describe two new hypomorphic mec1 mutants that are completely defective in the G1/S and intra-S DNA damage checkpoints but properly delay nuclear division after UV irradiation in G2. The finding that these mutants, although indistinguishable frommec1Δ cells with respect to the ability to replicate a damaged DNA template, do not lose viability after UV light and methyl methanesulfonate treatment suggests that checkpoint impairments do not necessarily result in hypersensitivity to DNA-damaging agents.
EMBO Reports | 2007
Davide Mantiero; Michela Clerici; Giovanna Lucchini; Maria Pia Longhese
The main responder to DNA double‐strand breaks (DSBs) in mammals is ataxia telangiectasia mutated (ATM), whereas DSB‐induced checkpoint activation in budding yeast seems to depend primarily on the ATM and Rad‐3‐related (ATR) orthologue Mec1. Here, we show that Saccharomyces cerevisiae Tel1, the ATM orthologue, has two functions in checkpoint response to DSBs. First, Tel1 participates, together with the MRX complex, in Mec1‐dependent DSB‐induced checkpoint activation by increasing the efficiency of single‐stranded DNA accumulation at the ends of DSBs, and this checkpoint function can be overcome by overproducing the exonuclease Exo1. Second, Tel1 can activate the checkpoint response to DSBs independently of Mec1, although its signalling activity only becomes apparent when several DSBs are generated. Furthermore, we provide evidence that the kinetics of DSB resection can influence Tel1 activation, indicating that processing of the DSB termini might influence the transition from Tel1/ATM‐ to Mec1/ATR‐dependent checkpoint.
The EMBO Journal | 2010
Maria Pia Longhese; Diego Bonetti; Nicola Manfrini; Michela Clerici
DNA double‐strand breaks (DSBs) are highly hazardous for genome integrity, because failure to repair these lesions can lead to genomic instability. DSBs can arise accidentally at unpredictable locations into the genome, but they are also normal intermediates in meiotic recombination. Moreover, the natural ends of linear chromosomes resemble DSBs. Although intrachromosomal DNA breaks are potent stimulators of the DNA damage response, the natural ends of linear chromosomes are packaged into protective structures called telomeres that suppress DNA repair/recombination activities. Although DSBs and telomeres are functionally different, they both undergo 5′–3′ nucleolytic degradation of DNA ends, a process known as resection. The resulting 3′‐single‐stranded DNA overhangs enable repair of DSBs by homologous recombination (HR), whereas they allow the action of telomerase at telomeres. The molecular activities required for DSB and telomere end resection are similar, indicating that the initial steps of HR and telomerase‐mediated elongation are related. Resection of both DSBs and telomeres must be tightly regulated in time and space to ensure genome stability and cell survival.
PLOS Genetics | 2010
Diego Bonetti; Michela Clerici; Savani Anbalagan; Marina Martina; Giovanna Lucchini; Maria Pia Longhese
Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks (DSBs) by packaging them into protective structures called telomeres that prevent DNA repair/recombination activities. Here we investigate the role of key telomeric proteins in protecting budding yeast telomeres from degradation. We show that the Saccharomyces cerevisiae shelterin-like proteins Rif1, Rif2, and Rap1 inhibit nucleolytic processing at both de novo and native telomeres during G1 and G2 cell cycle phases, with Rif2 and Rap1 showing the strongest effects. Also Yku prevents telomere resection in G1, independently of its role in non-homologous end joining. Yku and the shelterin-like proteins have additive effects in inhibiting DNA degradation at G1 de novo telomeres, where Yku plays the major role in preventing initiation, whereas Rif1, Rif2, and Rap1 act primarily by limiting extensive resection. In fact, exonucleolytic degradation of a de novo telomere is more efficient in yku70Δ than in rif2Δ G1 cells, but generation of ssDNA in Yku-lacking cells is limited to DNA regions close to the telomere tip. This limited processing is due to the inhibitory action of Rap1, Rif1, and Rif2, as their inactivation allows extensive telomere resection not only in wild-type but also in yku70Δ G1 cells. Finally, Rap1 and Rif2 prevent telomere degradation by inhibiting MRX access to telomeres, which are also protected from the Exo1 nuclease by Yku. Thus, chromosome end degradation is controlled by telomeric proteins that specifically inhibit the action of different nucleases.
DNA Repair | 2009
Maria Pia Longhese; Diego Bonetti; Ilaria Guerini; Nicola Manfrini; Michela Clerici
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity, but meiotic cells deliberately introduce them into their genome in order to initiate homologous recombination, which ensures proper homologous chromosome segregation. To minimize the risk of deleterious effects, meiotic DSB formation, processing and repair are tightly regulated in order to occur only at the right time and place. Furthermore, a highly conserved signal-transduction pathway, called meiotic recombination checkpoint, coordinates DSB repair with meiotic progression and promotes meiotic recombination.
Molecular Microbiology | 2006
Maria Pia Longhese; Davide Mantiero; Michela Clerici
DNA double‐strand breaks (DSBs) are among the most deleterious types of damage that can occur in the genome of eukaryotic cells because failure to repair them can lead to loss of genetic information and chromosome rearrangements. DSBs can arise by failures in DNA replication and by exposure to environmental factors, such as ionizing radiations and radiomimetic chemicals. Moreover, they might arise when telomeres undergo extensive erosion, leading to the activation of the DNA damage response pathways and the onset of apoptosis and/or senescence. Importantly, DSBs can also form in a programmed manner during development. For example, meiotic recombination and rearrangement of the immunoglobulin genes in lymphocytes require the generation of site‐ or region‐specific DSBs through the action of specific endonucleases. Efficient DSB repair is crucial in safeguarding genome integrity, whose maintenance in the face of DSBs involves branched signalling networks that switch on DNA damage checkpoints, activate DNA repair, induce chromatin reorganization and modulate numerous cellular processes. Not surprisingly, defects in these networks result in a variety of diseases ranging from severe genetic disorders to cancer predisposition and accelerated ageing.