Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Pia Longhese is active.

Publication


Featured researches published by Maria Pia Longhese.


Molecular Cell | 2003

A Central Role for DNA Replication Forks in Checkpoint Activation and Response.

José Antonio Tercero; Maria Pia Longhese; John F. X. Diffley

The checkpoint proteins Rad53 and Mec1-Ddc2 regulate many aspects of cell metabolism in response to DNA damage. We have examined the relative importance of downstream checkpoint effectors on cell viability. Checkpoint regulation of mitosis, gene expression, and late origin firing make only modest contributions to viability. By contrast, the checkpoint is essential for preventing irreversible breakdown of stalled replication forks. Moreover, recruitment of Ddc2 to nuclear foci and subsequent activation of the Rad53 kinase only occur during S phase and require the assembly of replication forks. Thus, DNA replication forks are both activators and primary effectors of the checkpoint pathway in S phase.


Nature Cell Biology | 2012

Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation

Marzia Fumagalli; Francesca Rossiello; Michela Clerici; Sara Barozzi; Davide Cittaro; Jessica Kaplunov; Gabriele Bucci; Miryana Dobreva; Valentina Matti; Christian M. Beauséjour; Utz Herbig; Maria Pia Longhese; Fabrizio d'Adda di Fagagna

The DNA-damage response (DDR) arrests cell-cycle progression until damage is removed. DNA-damage-induced cellular senescence is associated with persistent DDR. The molecular bases that distinguish transient from persistent DDR are unknown. Here we show that a large fraction of exogenously induced persistent DDR markers is associated with telomeric DNA in cultured cells and mammalian tissues. In yeast, a chromosomal DNA double-strand break next to a telomeric sequence resists repair and impairs DNA ligase 4 recruitment. In mammalian cells, ectopic localization of telomeric factor TRF2 next to a double-strand break induces persistent DNA damage and DDR. Linear, but not circular, telomeric DNA or scrambled DNA induces a prolonged checkpoint in normal cells. In terminally differentiated tissues of old primates, DDR markers accumulate at telomeres that are not critically short. We propose that linear genomes are not uniformly reparable and that telomeric DNA tracts, if damaged, are irreparable and trigger persistent DDR and cellular senescence.


Journal of Biological Chemistry | 2005

The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends

Michela Clerici; Davide Mantiero; Giovanna Lucchini; Maria Pia Longhese

When eukaryotic chromosomes undergo double strand breaks (DSBs), several evolutionarily conserved proteins, among which the MRX complex, are recruited to the break site, leading to checkpoint activation and DNA repair. The function of the Saccharomyces cerevisiae Sae2 protein, which is known to work together with the MRX complex in meiotic DSB processing and in specific mitotic DSB repair events, is only beginning to be elucidated. Here we provide new insights into the role of Sae2 in mitotic DSB repair. We show that repair by single strand annealing of a single DSB, which is generated by the HO endonuclease between direct repeats, is defective both in the absence of Sae2 and in the presence of the hypomorphic rad50s allele altering the Rad50 subunit of MRX. Moreover, SAE2 overexpression partially suppresses the rad50s single strand annealing repair defects, suggesting that the latter might arise from defective MRX-Sae2 interactions. Finally, SAE2 deletion slows down resection of an HO-induced DSB and impairs DSB end bridging. Thus, Sae2 participates in DSB single strand annealing repair by ensuring both resection and intrachromosomal association of the broken ends.


The EMBO Journal | 1998

DNA damage checkpoint in budding yeast.

Maria Pia Longhese; Marco Foiani; Marco Muzi-Falconi; Giovanna Lucchini; Paolo Plevani

Eukaryotic cells have evolved a network of control mechanisms, known as checkpoints, which coordinate cell‐cycle progression in response to internal and external cues. The yeast Saccharomyces cerevisiae has been invaluable in dissecting genetically the DNA damage checkpoint pathway. Recent results on posttranslational modifications and protein–protein interactions of some key factors provide new insights into the architecture of checkpoint protein complexes and their order of function.


The EMBO Journal | 1997

The novel DNA damage checkpoint protein Ddc1p is phosphorylated periodically during the cell cycle and in response to DNA damage in budding yeast

Maria Pia Longhese; Vera Paciotti; Roberta Fraschini; Raffaella Zaccarini; Paolo Plevani; Giovanna Lucchini

The DDC1 gene was identified, together with MEC3 and other checkpoint genes, during a screening for mutations causing synthetic lethality when combined with a conditional allele altering DNA primase. Deletion of DDC1 causes sensitivity to UV radiation, methyl methanesulfonate (MMS) and hydroxyurea (HU). ddc1Δ mutants are defective in delaying G1–S and G2–M transition and in slowing down the rate of DNA synthesis when DNA is damaged during G1, G2 or S phase, respectively. Therefore, DDC1 is involved in all the known DNA damage checkpoints. Conversely, Ddc1p is not required for delaying entry into mitosis when DNA synthesis is inhibited. ddc1 and mec3 mutants belong to the same epistasis group, and DDC1 overexpression can partially suppress MMS and HU sensitivity of mec3Δ strains, as well as their checkpoint defects. Moreover, Ddc1p is phosphorylated periodically during a normal cell cycle and becomes hyperphosphorylated in response to DNA damage. Both phosphorylation events are at least partially dependent on a functional MEC3 gene.


Nature Genetics | 2004

RPA regulates telomerase action by providing Est1p access to chromosome ends

Vera Schramke; Pierre Luciano; Vanessa Brevet; Sylvine Guillot; Yves Corda; Maria Pia Longhese; Eric Gilson; Vincent Géli

Replication protein A (RPA) is a highly conserved single-stranded DNA–binding protein involved in DNA replication, recombination and repair. We show here that RPA is present at the telomeres of the budding yeast Saccharomyces cerevisiae, with a maximal association in S phase. A truncation of the N-terminal region of Rfa2p (associated with the rfa2Δ40 mutated allele) results in severe telomere shortening caused by a defect in the in vivo regulation of telomerase activity. Cells carrying rfa2Δ40 show impaired binding of the protein Est1p, which is required for telomerase action. In addition, normal telomere length can be restored by expressing a Cdc13-Est1p hybrid protein. These findings indicate that RPA activates telomerase by loading Est1p onto telomeres during S phase. We propose a model of in vivo telomerase action that involves synergistic action of RPA and Cdc13p at the G-rich 3′ overhang of telomeric DNA.


The EMBO Journal | 1998

Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p.

Vera Paciotti; Giovanna Lucchini; Paolo Plevani; Maria Pia Longhese

Checkpoints prevent DNA replication or nuclear division when chromosomes are damaged. The Saccharomyces cerevisiae DDC1 gene belongs to the RAD17, MEC3 and RAD24 epistasis group which, together with RAD9, is proposed to act at the beginning of the DNA damage checkpoint pathway. Ddc1p is periodically phosphorylated during unperturbed cell cycle and hyperphosphorylated in response to DNA damage. We demonstrate that Ddc1p interacts physically in vivo with Mec3p, and this interaction requires Rad17p. We also show that phosphorylation of Ddc1p depends on the key checkpoint protein Mec1p and also on Rad24p, Rad17p and Mec3p. This suggests that Mec1p might act together with the Rad24 group of proteins at an early step of the DNA damage checkpoint response. On the other hand, Ddc1p phosphorylation is independent of Rad53p and Rad9p. Moreover, while Ddc1p is required for Rad53p phosphorylation, it does not play any major role in the phosphorylation of the anaphase inhibitor Pds1p, which requires RAD9 and MEC1. We suggest that Rad9p and Ddc1p might function in separated branches of the DNA damage checkpoint pathway, playing different roles in determining Mec1p activity and/or substrate specificity.


Genes & Development | 2008

DNA damage response at functional and dysfunctional telomeres

Maria Pia Longhese

The ends of eukaryotic chromosomes have long been defined as structures that must avoid being detected as DNA breaks. They are protected from checkpoints, homologous recombination, end-to-end fusions, or other events that normally promote repair of intrachromosomal DNA breaks. This differentiation is thought to be the consequence of a unique organization of chromosomal ends into specialized nucleoprotein complexes called telomeres. However, it is becoming increasingly clear that proteins governing the DNA damage response are intimately involved in the regulation of telomeres, which undergo processing and structural changes that elicit a transient DNA damage response. This suggests that functional telomeres can be recognized as DNA breaks during a temporally limited window, indicating that the difference between a break and a telomere is less defined than previously assumed.


Molecular and Cellular Biology | 1994

Replication factor A is required in vivo for DNA replication, repair, and recombination.

Maria Pia Longhese; Paolo Plevani; Giovanna Lucchini

Replication factor A (RF-A) is a heterotrimeric single-stranded-DNA-binding protein which is conserved in all eukaryotes. Since the availability of conditional mutants is an essential step to define functions and interactions of RF-A in vivo, we have produced and characterized mutations in the RFA1 gene, encoding the p70 subunit of the complex in Saccharomyces cerevisiae. This analysis provides the first in vivo evidence that RF-A function is critical not only for DNA replication but also for efficient DNA repair and recombination. Moreover, genetic evidence indicate that p70 interacts both with the DNA polymerase alpha-primase complex and with DNA polymerase delta.


EMBO Reports | 2006

The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling.

Michela Clerici; Davide Mantiero; Giovanna Lucchini; Maria Pia Longhese

Double‐strand breaks (DSBs) elicit a DNA damage response, resulting in checkpoint‐mediated cell‐cycle delay and DNA repair. The Saccharomyces cerevisiae Sae2 protein is known to act together with the MRX complex in meiotic DSB processing, as well as in DNA damage response during the mitotic cell cycle. Here, we report that cells lacking Sae2 fail to turn off both Mec1‐ and Tel1‐dependent checkpoints activated by a single irreparable DSB, and delay Mre11 foci disassembly at DNA breaks, indicating that Sae2 may negatively regulate checkpoint signalling by modulating MRX association at damaged DNA. Consistently, high levels of Sae2 prevent checkpoint activation and impair MRX foci formation in response to unrepaired DSBs. Mec1‐ and Tel1‐dependent Sae2 phosphorylation is necessary for these Sae2 functions, suggesting that the two kinases, once activated, may regulate checkpoint switch off through Sae2‐mediated inhibition of MRX signalling.

Collaboration


Dive into the Maria Pia Longhese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge