Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michela Rugolo is active.

Publication


Featured researches published by Michela Rugolo.


Genome Research | 2011

OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution

Ghizlane Elachouri; Sara Vidoni; Claudia Zanna; Alexandre Pattyn; Hassan Boukhaddaoui; Karen Gaget; Patrick Yu-Wai-Man; Giuseppe Gasparre; Emmanuelle Sarzi; Cécile Delettre; Aurélien Olichon; Dominique Loiseau; Pascal Reynier; Patrick F. Chinnery; Agnès Rötig; Valerio Carelli; Christian P. Hamel; Michela Rugolo; Guy Lenaers

Eukaryotic cells harbor a small multiploid mitochondrial genome, organized in nucleoids spread within the mitochondrial network. Maintenance and distribution of mitochondrial DNA (mtDNA) are essential for energy metabolism, mitochondrial lineage in primordial germ cells, and to prevent mtDNA instability, which leads to many debilitating human diseases. Mounting evidence suggests that the actors of the mitochondrial network dynamics, among which is the intramitochondrial dynamin OPA1, might be involved in these processes. Here, using siRNAs specific to OPA1 alternate spliced exons, we evidenced that silencing of the OPA1 variants including exon 4b leads to mtDNA depletion, secondary to inhibition of mtDNA replication, and to marked alteration of mtDNA distribution in nucleoid and nucleoid distribution throughout the mitochondrial network. We demonstrate that a small hydrophobic 10-kDa peptide generated by cleavage of the OPA1-exon4b isoform is responsible for this process and show that this peptide is embedded in the inner membrane and colocalizes and coimmunoprecipitates with nucleoid components. We propose a novel synthetic model in which a peptide, including two trans-membrane domains derived from the N terminus of the OPA1-exon4b isoform in vertebrates or from its ortholog in lower eukaryotes, might contribute to nucleoid attachment to the inner mitochondrial membrane and promotes mtDNA replication and distribution. Thus, this study places OPA1 as a direct actor in the maintenance of mitochondrial genome integrity.


Journal of Biological Chemistry | 2009

Respiratory Complex I Dysfunction Due to Mitochondrial DNA Mutations Shifts the Voltage Threshold for Opening of the Permeability Transition Pore toward Resting Levels

Anna Maria Porcelli; Alessia Angelin; Anna Ghelli; Elisa Mariani; Andrea Martinuzzi; Valerio Carelli; Valeria Petronilli; Paolo Bernardi; Michela Rugolo

We have studied mitochondrial bioenergetics in HL180 cells (a cybrid line harboring the T14484C/ND6 and G14279A/ND6 mtDNA mutations of Leber hereditary optic neuropathy, leading to an ∼50% decrease of ATP synthesis) and XTC.UC1 cells (derived from a thyroid oncocytoma bearing a disruptive frameshift mutation in MT-ND1, which impairs complex I assembly). The addition of rotenone to HL180 cells and of antimycin A to XTC.UC1 cells caused fast mitochondrial membrane depolarization that was prevented by treatment with cyclosporin A, intracellular Ca2+ chelators, and antioxidant. Both cell lines also displayed an anomalous response to oligomycin, with rapid onset of depolarization that was prevented by cyclosporin A and by overexpression of Bcl-2. These findings indicate that depolarization by respiratory chain inhibitors and oligomycin was due to opening of the mitochondrial permeability transition pore (PTP). A shift of the threshold voltage for PTP opening close to the resting potential may therefore be the underlying cause facilitating cell death in diseases affecting complex I activity. This study provides a unifying reading frame for previous observations on mitochondrial dysfunction, bioenergetic defects, and Ca2+ deregulation in mitochondrial diseases. Therapeutic strategies aimed at normalizing the PTP voltage threshold may be instrumental in ameliorating the course of complex I-dependent mitochondrial diseases.


Biochimica et Biophysica Acta | 2011

Learning from oncocytic tumors: Why choose inefficient mitochondria? ☆

Giuseppe Gasparre; Giovanni Romeo; Michela Rugolo; Anna Maria Porcelli

A prominent role for mitochondrial genes and metabolism has been recently characterized in oncocytic transformation of cancer cells. From mitochondrial ultrastructure alterations to respiratory complexes disruption and mutations within mitochondrial genes, oncocytic tumors present with a plethora of features that have helped understand the role that these organelles and their fundamental metabolic functions may play in cancer development. The history of this under-diagnosed subset of tumors and the bioenergetic implications of their mitochondrial derangement are discussed in this review along with the opportunities that oncocytic tumors offer to draw general conclusions on the involvement of mitochondria in cancer.


Biochimica et Biophysica Acta | 2012

The effects of idebenone on mitochondrial bioenergetics

Valentina Giorgio; Valeria Petronilli; Anna Ghelli; Valerio Carelli; Michela Rugolo; Giorgio Lenaz; Paolo Bernardi

We have studied the effects of idebenone on mitochondrial function in cybrids derived from one normal donor (HQB17) and one patient harboring the G3460A/MT-ND1 mutation of Lebers Hereditary Optic Neuropathy (RJ206); and in XTC.UC1 cells bearing a premature stop codon at aminoacid 101 of MT-ND1 that hampers complex I assembly. Addition of idebenone to HQB17 cells caused mitochondrial depolarization and NADH depletion, which were inhibited by cyclosporin (Cs) A and decylubiquinone, suggesting an involvement of the permeability transition pore (PTP). On the other hand, addition of dithiothreitol together with idebenone did not cause PTP opening and allowed maintenance of the mitochondrial membrane potential even in the presence of rotenone. Addition of dithiothreitol plus idebenone, or of idebenol, to HQB17, RJ206 and XTC.UC1 cells sustained membrane potential in intact cells and ATP synthesis in permeabilized cells even in the presence of rotenone and malonate, and restored a good level of coupled respiration in complex I-deficient XTC.UC1 cells. These findings demonstrate that idebenol can feed electrons at complex III. If the quinone is maintained in the reduced state, a task that in some cell types appears to be performed by dicoumarol-sensitive NAD(P)H:quinone oxidoreductase 1 [Haefeli et al. (2011) PLoS One 6, e17963], electron transfer to complex III may allow reoxidation of NADH in complex I deficiencies.


Cancer Research | 2011

A Mutation Threshold Distinguishes the Antitumorigenic Effects of the Mitochondrial Gene MTND1, an Oncojanus Function

Giuseppe Gasparre; Ivana Kurelac; Mariantonietta Capristo; Luisa Iommarini; Anna Ghelli; Claudio Ceccarelli; Giordano Nicoletti; Patrizia Nanni; Carla De Giovanni; Katia Scotlandi; Christine M. Betts; Valerio Carelli; Pier Luigi Lollini; Giovanni Romeo; Michela Rugolo; Anna Maria Porcelli

The oncogenic versus suppressor roles of mitochondrial genes have long been debated. Peculiar features of mitochondrial genetics such as hetero/homoplasmy and mutation threshold are seldom taken into account in this debate. Mitochondrial DNA (mtDNA) mutations generally have been claimed to be protumorigenic, but they are also hallmarks of mostly benign oncocytic tumors wherein they help reduce adaptation to hypoxia by destabilizing hypoxia-inducible factor-1α (HIF1α). To determine the influence of a disassembling mtDNA mutation and its hetero/homoplasmy on tumorigenic and metastatic potential, we injected mice with tumor cells harboring different loads of the gene MTND1 m.3571insC. Cell cultures obtained from tumor xenografts were then analyzed to correlate energetic competence, apoptosis, α-ketoglutarate (α-KG)/succinate (SA) ratio, and HIF1α stabilization with the mutation load. A threshold level for the antitumorigenic effect of MTND1 m.3571insC mutation was defined, above which tumor growth and invasiveness were reduced significantly. Notably, HIF1α destabilization and downregulation of HIF1α-dependent genes occurred in cells and tumors lacking complex I (CI), where there was an associated imbalance of α-KG/SA despite the presence of an actual hypoxic environment. These results strongly implicate mtDNA mutations as a cause of oncocytic transformation. Thus, the antitumorigenic and antimetastatic effects of high loads of MTND1 m.3571insC, following CI disassembly, define a novel threshold-regulated class of cancer genes. We suggest these genes be termed oncojanus genes to recognize their ability to contribute either oncogenic or suppressive functions in mitochondrial settings during tumorigenesis.


PLOS ONE | 2009

The background of mitochondrial DNA haplogroup J increases the sensitivity of Leber's hereditary optic neuropathy cells to 2,5-hexanedione toxicity.

Anna Ghelli; Anna Maria Porcelli; Claudia Zanna; Sara Vidoni; Stefano Mattioli; Anna Barbieri; Luisa Iommarini; Maria Pala; Alessandro Achilli; Antonio Torroni; Michela Rugolo; Valerio Carelli

Lebers hereditary optic neuropathy (LHON) is a maternally inherited blinding disease due to mitochondrial DNA (mtDNA) point mutations in complex I subunit genes, whose incomplete penetrance has been attributed to both genetic and environmental factors. Indeed, the mtDNA background defined as haplogroup J is known to increase the penetrance of the 11778/ND4 and 14484/ND6 mutations. Recently it was also documented that the professional exposure to n-hexane might act as an exogenous trigger for LHON. Therefore, we here investigate the effect of the n-hexane neurotoxic metabolite 2,5-hexanedione (2,5-HD) on cell viability and mitochondrial function of different cell models (cybrids and fibroblasts) carrying the LHON mutations on different mtDNA haplogroups. The viability of control and LHON cybrids and fibroblasts, whose mtDNAs were completely sequenced, was assessed using the MTT assay. Mitochondrial ATP synthesis rate driven by complex I substrates was determined with the luciferine/luciferase method. Incubation with 2,5-HD caused the maximal loss of viability in control and LHON cells. The toxic effect of this compound was similar in control cells irrespective of the mtDNA background. On the contrary, sensitivity to 2,5-HD induced cell death was greatly increased in LHON cells carrying the 11778/ND4 or the 14484/ND6 mutation on haplogroup J, whereas the 11778/ND4 mutation in association with haplogroups U and H significantly improved cell survival. The 11778/ND4 mutation on haplogroup U was also more resistant to inhibition of complex I dependent ATP synthesis by 2,5-HD. In conclusion, this study shows that mtDNA haplogroups modulate the response of LHON cells to 2,5-HD. In particular, haplogroup J makes cells more sensitive to its toxic effect. This is the first evidence that an mtDNA background plays a role by interacting with an environmental factor and that 2,5-HD may be a risk element for visual loss in LHON. This proof of principle has broad implications for other neurodegenerative disorders such as Parkinsons disease.


Human Mutation | 2009

An inherited mitochondrial DNA disruptive mutation shifts to homoplasmy in oncocytic tumor cells

Giuseppe Gasparre; Luisa Iommarini; Anna Maria Porcelli; Martin Lang; Gian Gaetano Ferri; Ivana Kurelac; Roberta Zuntini; Elisa Mariani; Lucia Fiammetta Pennisi; Ernesto Pasquini; Gianandrea Pasquinelli; Anna Ghelli; Elena Bonora; Claudio Ceccarelli; Michela Rugolo; Nunzio Salfi; Giovanni Romeo; Valerio Carelli

A disruptive frameshift mtDNA mutation affecting the ND5 subunit of complex I is present in homoplasmy in a nasopharyngeal oncocytic tumor and inherited as a heteroplasmic germline mutation recurring in two of the patients siblings. Homoplasmic ND5 mutation in the tumor correlates with lack of the ND6 subunit, suggesting complex I disassembly. A few oncocytic areas, expressing ND6 and heteroplasmic for the ND5 mutation, harbor a de novo homoplasmic ND1 mutation. Since shift to homoplasmy of ND1 and ND5 mutations occurs exclusively in tumor cells, we conclude that complex I mutations may have a selective advantage and accompany oncocytic transformation. Hum Mutat 0, 1–6, 2008.


Human Molecular Genetics | 2013

The cytochrome b p.278Y>C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes

Anna Ghelli; Concetta Valentina Tropeano; Maria Antonietta Calvaruso; Alessandra Marchesini; Luisa Iommarini; Anna Maria Porcelli; Claudia Zanna; Vera De Nardo; Andrea Martinuzzi; John Vissing; Ivana Kurelac; Giuseppe Gasparre; Nur Selamoglu; Fevzi Daldal; Michela Rugolo

Cytochrome b is the only mtDNA-encoded subunit of the mitochondrial complex III (CIII), the functional bottleneck of the respiratory chain. Previously, the human cytochrome b missense mutation m.15579A>G, which substitutes the Tyr 278 with Cys (p.278Y>C), was identified in a patient with severe exercise intolerance and multisystem manifestations. In this study, we characterized the biochemical properties of cybrids carrying this mutation and report that the homoplasmic p.278Y>C mutation caused a dramatic reduction in the CIII activity and in CIII-driven mitochondrial ATP synthesis. However, the CI, CI + CIII and CII + CIII activities and the rate of ATP synthesis driven by the CI or CII substrate were only partially reduced or unaffected. Consistent with these findings, mutated cybrids maintained the mitochondrial membrane potential in the presence of oligomycin, indicating that it originated from the respiratory electron transport chain. The p.278Y>C mutation enhanced superoxide production, as indicated by direct measurements in mitochondria and by the imbalance of glutathione homeostasis in intact cybrids. Remarkably, although the assembly of CI or CIII was not affected, the examination of respiratory supercomplexes revealed that the amounts of CIII dimer and III2IV1 were reduced, whereas those of I1III2IVn slightly increased. We therefore suggest that the deleterious effects of p.278Y>C mutation on cytochrome b are palliated when CIII is assembled into the supercomplexes I1III2IVn, in contrast to when it is found alone. These findings underline the importance of supramolecular interactions between complexes for maintaining a basal respiratory chain activity and shed light to the molecular basis of disease manifestations associated with this mutation.


Antioxidants & Redox Signaling | 2013

Why Mitochondria Must Fuse to Maintain Their Genome Integrity

Sara Vidoni; Claudia Zanna; Michela Rugolo; Emmanuelle Sarzi; Guy Lenaers

SIGNIFICANCE The maintenance of mitochondrial genome integrity is a major challenge for cells to sustain energy production by respiration. RECENT ADVANCES Recently, mitochondrial membrane dynamics emerged as a key process contributing to prevent mitochondrial DNA (mtDNA) alterations. Indeed, both fundamental and clinical data suggest that disruption of mitochondrial fusion, related to mutations in the OPA1, MFN2, PINK1, and PARK2 genes, leads to the accumulation of mutations in the mitochondrial genome. CRITICAL ISSUES We discuss here the possibility that mitochondrial fusion acts as a direct mechanism to prevent the generation of altered mtDNA and to eliminate mutated deleterious genomes either by trans-complementation or by mitophagy. FUTURE DIRECTIONS Finally, we conclude this review with a short evolutionary comparison between the mechanisms involved in mitochondrial and bacterial modes of genome distribution and plasticity, highlighting possible common conserved processes required for the maintenance of their genome integrity, which should inspire our future investigations.


Human Molecular Genetics | 2011

A clinically complex form of dominant optic atrophy (OPA8) maps on chromosome 16

Valerio Carelli; Simone Schimpf; Nico Fuhrmann; Maria Lucia Valentino; Claudia Zanna; Luisa Iommarini; Monika Papke; Simone Schaich; Sabine Tippmann; Britta Baumann; Piero Barboni; Lora Longanesi; Michela Rugolo; Anna Ghelli; Marcel V. Alavi; Richard J. Youle; Laura Bucchi; Rosanna Carroccia; Maria Pia Giannoccaro; Caterina Tonon; Raffaele Lodi; Giovanna Cenacchi; Pasquale Montagna; Rocco Liguori; Bernd Wissinger

Dominant optic atrophy (DOA) is genetically heterogeneous and pathogenic mutations have been identified in the OPA1 and OPA3 genes, both encoding for mitochondrial proteins. We characterized clinical and laboratory features in a large OPA1-negative family with complicated DOA. Search for mitochondrial dysfunction was performed by studying muscle biopsies, fibroblasts, platelets and magnetic resonance (MR) spectroscopy. Genetic investigations included mitochondrial DNA (mtDNA) analysis, linkage analysis, copy number variation (CNV) analysis and candidate gene screening. Optic neuropathy was undistinguishable from that in OPA1-DOA and frequently associated with late-onset sensorineural hearing loss, increases of central conduction times at somato-sensory evoked potentials and various cardiac abnormalities. Serum lactic acid after exercise, platelet respiratory complex activities, adenosine triphosphate (ATP) content in fibroblasts and muscle phosphorus MR spectroscopy all failed to reveal a mitochondrial dysfunction. However, muscle biopsies and their mtDNA analysis showed increased mitochondrial biogenesis. Furthermore, patients fibroblasts grown in the galactose medium were unable to increase ATP content compared with controls, and exhibited abnormally high rate of fusion activity. Genome-wide linkage revealed a locus on chromosome 16q21-q22 with a maximum two-point LOD score of 8.84 for the marker D16S752 and a non-recombinant interval of ∼ 6.96 cM. Genomic screening of 45 genes in this interval including several likely candidate genes (CALB2, CYB5B, TK2, DHODH, PLEKHG4) revealed no mutation. Moreover, we excluded the presence of CNVs using array-based comparative genome hybridization. The identification of a new OPA locus (OPA8) in this pedigree demonstrates further genetic heterogeneity in DOA, and our results indicate that the pathogenesis may still involve mitochondria.

Collaboration


Dive into the Michela Rugolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Vidoni

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge