Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michela Sturini is active.

Publication


Featured researches published by Michela Sturini.


Environmental Science & Technology | 2010

Photochemical degradation of marbofloxacin and enrofloxacin in natural waters.

Michela Sturini; Andrea Speltini; Federica Maraschi; Antonella Profumo; Luca Pretali; Elisa Fasani; Angelo Albini

The photochemical fate of Marbofloxacin (MAR) and Enrofloxacin (ENR), two Fluoroquinolones (FQs) largely used as veterinary bactericides known to be present in surface waters, was investigated in aqueous solution. The degradation of these pollutants (5-50 microg L(-1) starting concentration) was complete in about 1 h by exposure to solar light (summer) and obeyed a first-order kinetics. The structure of the primary photoproducts was determined. Those from ENR arose through three paths, namely, oxidative degradation of the piperazine side-chain, reductive defluorination, and fluorine solvolysis. More heavily degraded products that had been previously reported were rationalized as secondary photoproducts from the present ones. As for MAR, this underwent homolytic cleavage of the tetrahydrooxadiazine moiety to give two quinolinols. All of the primary products were themselves degraded in about 1 h. The photoreactions rates were scarcely affected by Ca(2+) (200 mg L(-1)), Mg(2+) (30 mg L(-1)), Cl(-) (30 mg L(-1)), and humic acid (1 mg L(-1)), but increased in the presence of phosphate (20 mg L(-1)). The fastest degradation of ENR occurred at pH about 8 where the zwitterionic form was present, while in the case of MAR the cationic form was the most reactive.


Journal of Separation Science | 2010

Fluoroquinolone antibiotics in environmental waters: sample preparation and determination.

Andrea Speltini; Michela Sturini; Federica Maraschi; Antonella Profumo

The aim of this review is to provide a general overview on the analytical methods proposed in the last decade for trace fluoroquinolone (FQ) determination in environmental waters. A large number of studies have been developed on this topic in reason of the importance of their monitoring in the studies of environmental mobility and potential degradation pathways. Every step of the analysis has been carefully considered, with a particular attention to sample preparation, in relationship with the problems involved in the analysis of real matrices. The different strategies to minimise interference from organic matter and to achieve optimal sensitivity, especially important in those samples with lower FQ concentrations, were also highlighted. Results and progress in this field have been described and critically commented. Moreover, a worldwide overview on the presence of FQs in the environmental waters has been reported.


Chemosphere | 2012

Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials Marbofloxacin and Enrofloxacin

Michela Sturini; Andrea Speltini; Federica Maraschi; Antonella Profumo; Luca Pretali; Elisa Fasani; Angelo Albini

Marbofloxacin (MAR) and Enrofloxacin (ENR), two largely employed veterinary Fluoroquinolones (FQs), were found to be present at the micrograms per kilogram level in agricultural soils of South Lombardy (Italy) several months after manuring. Distribution coefficients (K(d)) from sorption experiments indicated a strong binding to the soil. Soil samples fortified with environmentally significant FQs amounts (0.5 mg kg(-1)) were exposed to solar light that promoted extensive degradation (80%) of both drugs in 60-150 h. Thus, photochemistry could be considered a significant depollution path in the soil, although it was two orders of magnitudes slower than in aqueous solution and a fraction of the drug (ca. 20%) remained unaffected. For MAR the photoprocess was the same as in solution, and involved cleavage of the tetrahydrooxadiazine ring. On the contrary, with ENR only some of the photoproducts determined in water (those arising from a stepwise oxidation of the piperazine side chain) were observed. Substitution of the 6-fluoro by a hydroxyl group and reduction did not occur in the soil, supporting the previous contention that such processes required polar solvation of FQs. Consistently with this rationalization, the irradiation of thin layers of solid drugs led to essentially the same products distribution as in the soil. From the environmental point of view it is important to notice that photodegradation mainly affects the side-chains, while the fluoroquinolone ring, to which the biological effect is associated, is conserved up to the later stages of the degradation.


Journal of Separation Science | 2009

Solid-phase extraction and HPLC determination of fluoroquinolones in surface waters

Michela Sturini; Andrea Speltini; Luca Pretali; Elisa Fasani; Antonella Profumo

An investigation on filtration procedures and SPE sorbents used for the determination of traces of the most common veterinary fluoroquinolones (FQs), marbofloxacin (MAR) and enrofloxacin (ENR) used as antibacterial agents in cattle and swine farms in the province of Pavia (Italy), was performed in natural waters. The filter composition and the sorbent used in the SPE strongly influence the correct recovery, both in terms of total and dissolved FQs concentration. An accurate comparison among different filters and SPE sorbents showed that a full determination of analytes was possible on nylon filters followed by anionic (WAX) and hydrophilic-lipophilic balance (HLB) resins as SPE. Quantitative analysis was done by chromatography with fluorescence detection (HPLC-FD). Fluoroquinolones recovery was between 90 and 116% with RSD not greater than 10% (sample volume 250 mL). The developed method allowed to determine both dissolved and NOM-absorbed fractions of FQs, therefore a full determination of the analytes was possible. Limits of detection (LOD) and quantification (LOQ) were, respectively, 0.7 and 2.2 ng/L for ENR and 2 and 6 ng/L for MAR. The kinetics of degradation under solar light was explored.


Journal of Chromatography A | 2015

Graphene-derivatized silica as an efficient solid-phase extraction sorbent for pre-concentration of fluoroquinolones from water followed by liquid-chromatography fluorescence detection.

Andrea Speltini; Michela Sturini; Federica Maraschi; Luana Consoli; Alberto Zeffiro; Antonella Profumo

This work presents a novel analytical method based on graphene for the determination of five widely used fluoroquinolones (FQs) in aqueous matrices. The procedure entails solid-phase extraction (SPE) on graphene-derivatized silica (200mg), followed by liquid chromatography with fluorescence detection. Monolayer graphene oxide (GO) flakes were covalently bonded onto aminopropyl silica microparticles, and then treated with aqueous hydrazine to obtain the reduced GO (RGO). The final material (RGO-silica) was characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and BET analysis, and for the first time evaluated as mixed-mode sorbent for the SPE of FQs from natural waters. Accuracy was studied on tap/raw river water in the concentration range 5-10,000ngL(-1), obtaining mean absolute recoveries from 72 to 118%. The inter-day precision was good, showing relative standard deviations (RSDs) in the range 5-15%. Sample volumes up to 1L provided enrichment factors up to 1000, achieving accurate quantification of concentrations as low as 5ngL(-1). The analytes were simultaneously and quantitatively eluted from the RGO-silica cartridge in a single fraction by using acetonitrile combined with aqueous tetrabutyl ammonium hydroxide. The batch-to-batch reproducibility was verified on three independently prepared RGO-silica samples. RGO-silica was advantageous in terms of adsorption capacity and reusability with respect to commercial sorbents; the cartridge proved to be reusable for at least 10 consecutive extractions, with no significant loss of efficiency (recovery >70%). The analytical procedure was applied to the determination of FQs in actual environmental waters.


Analytica Chimica Acta | 2017

Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review

Andrea Speltini; Andrea Scalabrini; Federica Maraschi; Michela Sturini; Antonella Profumo

This paper presents an overview of the recent applications of molecularly imprinted polymers (MIPs) to sample preparation. The review is thought to cover analytical procedures for extraction of contaminants (mainly illegal/noxious organic compounds) from food and environmental matrices, with a particular focus on the various pre-concentration/cleanup techniques, that is offline and online solid-phase extraction (SPE), dispersive SPE (d-SPE), magnetic SPE (MSPE), solid-phase microextraction (SPME) and stir-bar sorptive extraction (SBSE), applied before instrumental quantification. The selectivity and extraction efficiency of MIP-based sorbent phases are critically discussed, also in relation to the physical-chemical properties resulting from the synthetic procedures. A variety of molecularly imprinted sorbents is presented, including hybrid composites embedding carbon nanomaterials and ionic liquids. The analytical performance of MIP materials in sample preparation is commented as function of the complexity of the matrix, and it is compared to that exhibited by (commercial) aspecific and/or immunosorbent phases.


Journal of Chromatography A | 2010

Solvent-free microwave-assisted extraction of fluoroquinolones from soil and liquid chromatography-fluorescence determination

Michela Sturini; Andrea Speltini; Federica Maraschi; Elisa Rivagli; Antonella Profumo

Presented hereafter is a novel method entailing solvent free microwave-assisted extraction (MAE) and HPLC equipped with Fluorimetric Detector (HPLC-FD) for the simultaneous determination at μgkg(-1) concentration of eight fluoroquinolone antibiotics (FQs) (Ciprofloxacin, Danofloxacin, Enrofloxacin, Flerofloxacin, Levofloxacin, Marbofloxacin, Norfloxacin and Orbifloxacin) in agricultural soils. The extraction was quantitatively performed, in a single step, by using an aqueous solution containing Mg(II) as complexing agent, thus avoiding consumption of organic solvents. The optimal MAE conditions have been established through a chemometric approach by considering temperature, irradiation time and matrix moisture or solvent, as the most important recognized variables affecting the extraction yield. Satisfying recoveries (69-110%, spikes 0.03-0.5mgkg(-1)) were gained with a single MAE cycle of 20min, at 80°C in 20% (w/v) Mg(NO(3))(2) solution as leaching agent. MAE-SPE recoveries at 10μgkg(-1), concentration near method quantification limits (MQLs), were in the range 60-85%. Good repeatability and within-lab reproducibility were observed (both in the range 1-16%). The applicability of the method to real samples was assessed on natural contaminated soils. Compared to ultrasonic-assisted extraction (UAE), MAE was shown to be highly competitive in terms of extraction efficacy and analysis speed.


Chemosphere | 2015

Sunlight-induced degradation of fluoroquinolones in wastewater effluent: Photoproducts identification and toxicity.

Michela Sturini; Andrea Speltini; Federica Maraschi; Luca Pretali; Elida Ferri; Antonella Profumo

The photodegradation of Ciprofloxacin (CIP), Enrofloxacin (ENR), Danofloxacin (DAN), Marbofloxacin (MAR) and Levofloxacin (LEV), five widely used fluoroquinolones (FQs), was studied in urban WWTP secondary effluent, under solar light. The degradation profiles and the kinetic constants were determined at the micrograms per litre levels (20-50 μg L(-1)). The photo-generated products were identified by high-pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The toxicity of the photoproducts was assessed by Vibrio fischeri light emission inhibition assay performed on irradiated and not-irradiated FQs solutions, at environmentally significant concentrations. Attention was focused on the evaluation of the photoproducts contribution to the overall biotoxic effect of these emerging pollutants. Data from chronic exposure experiments (24-48 h) were primarily considered. Results confirmed the major usefulness of chronic toxicity data with respect to the acute assay ones and proved the not negligible biotoxicity of the FQs photodegradation products.


Journal of The Chemical Society-perkin Transactions 1 | 2000

Titanium dioxide photocatalyzed oxygenation of naphthalene and some of its derivatives

Federica Soana; Michela Sturini; Laura Cermenati; Angelo Albini

The titanium dioxide photocatalyzed oxygenation of naphthalene in water gives (E,Z)-2-formylcinnamaldehydes and 1,4-naphthoquinone besides traces of naphthols. 1-Substituted naphthalenes (both with an electron-withdrawing and -donating group) are likewise oxidised at about the same rate with a similar product distribution. The evidence obtained supports the hypothesis that the reaction involves transfer of a hydroxy group to naphthalene and reduction of oxygen to superoxide followed by coupling of the two species. In organic solvents the reaction is slower, more selective (a cyano group inhibits the reaction) and leads to phthalic anhydride and 1,4-naphthoquinone. The relation with the solvent-dependent course of the ozonation of the same substrates is commented upon.


Journal of Hazardous Materials | 2013

Photocatalytic reduction of vanadium(V) in TiO2 suspension: Chemometric optimization and application to wastewaters

Michela Sturini; Elisa Rivagli; Federica Maraschi; Andrea Speltini; Antonella Profumo; Angelo Albini

The photocatalytic reduction of V(V) to V(IV) over TiO₂ in aqueous solution is presented. Experiments were undertaken on air-equilibrated water spiked with V(V) (0.6-20 mgL(-1)), under UV-A or solar light. A chemometric study was performed to optimize the reduction yield, by considering the most important variables recognized to affect the photocatalytic process. Among pH, irradiation time and catalyst concentration, the two latter proved to be determinant. The good yields achieved (up to 98%), along with the possibility of working in aerated solution, make this procedure simple, rapid and efficient. Although a deep insight on the photochemical mechanisms was beyond our scope, the role of electron donors was investigated, proving the efficiency of 2-propanol, citric acid and formic acid in the acceleration and improvement of V(V) conversion. After irradiation, total vanadium and aqueous V(V) and V(IV) after solid-phase separation on Chelex-100 resin, were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). The procedure was applied to contaminated wastewaters, combining remediation and possible vanadium recovery as V(IV).

Collaboration


Dive into the Michela Sturini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge