Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Cea is active.

Publication


Featured researches published by Michele Cea.


Blood | 2012

Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma

Yu-Tzu Tai; Betty Y. Chang; Sun Young Kong; Mariateresa Fulciniti; Guang Yang; Yolanda Calle; Yiguo Hu; Jianhong Lin; Jian Jun Zhao; Antonia Cagnetta; Michele Cea; Michael A. Sellitto; Mike Y. Zhong; Qiuju Wang; Chirag Acharya; Daniel R. Carrasco; Joseph J. Buggy; Laurence Elias; Steven P. Treon; William Matsui; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

Bruton tyrosine kinase (Btk) has a well-defined role in B-cell development, whereas its expression in osteoclasts (OCs) further suggests a role in osteoclastogenesis. Here we investigated effects of PCI-32765, an oral and selective Btk inhibitor, on osteoclastogenesis as well as on multiple myeloma (MM) growth within the BM microenvironment. PCI-32765 blocked RANKL/M-CSF-induced phosphorylation of Btk and downstream PLC-γ2 in OCs, resulting in diminished TRAP5b (ED50 = 17 nM) and bone resorption activity. PCI-32765 also inhibited secretion of multiple cytokines and chemokines from OC and BM stromal cell cultures from both normal donors (ED50 = 0.5 nM) and MM patients. It decreased SDF-1-induced migration of MM cells, and down-regulated MIP1-α/CCL3 in MM cells. It also blocked MM cell growth and survival triggered by IL-6 or coculture with BM stromal cells or OCs in vitro. Importantly, PCI-32765 treatment significantly inhibits in vivo MM cell growth (P < .03) and MM cell-induced osteolysis of implanted human bone chips in SCID mice. Moreover, PCI-32765 prevents in vitro colony formation by stem-like cells from MM patients. Together, these results delineate functional sequelae of Btk activation mediating osteolysis and growth of MM cells, supporting evaluation of PCI-32765 as a novel therapeutic in MM.


PLOS ONE | 2009

Catastrophic NAD+ Depletion in Activated T Lymphocytes through Nampt Inhibition Reduces Demyelination and Disability in EAE

Santina Bruzzone; Floriana Fruscione; Sara Morando; Tiziana Ferrando; Alessandro Poggi; Anna Garuti; Agustina D'Urso; Martina Selmo; Federica Benvenuto; Michele Cea; Gabriele Zoppoli; Eva Moran; Debora Soncini; Alberto Ballestrero; Bernard Sordat; Franco Patrone; Raul Mostoslavsky; Antonio Uccelli; Alessio Nencioni

Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD+ synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD+ depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-γ and TNF-α production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD+-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD+ depletion. In addition, we relate defective IFN-γ and TNF-α production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.


Leukemia | 2014

CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications

Yu-Tzu Tai; Yosef Landesman; Chirag Acharya; Yolanda Calle; Mike Zhong; Michele Cea; Daniel Tannenbaum; Antonia Cagnetta; Michaela R. Reagan; Aditya Munshi; William Senapedis; J. R. Saint-Martin; T. Kashyap; Sharon Shacham; Michael Kauffman; Yumei Gu; Lizi Wu; Irene M. Ghobrial; Fenghuang Zhan; Andrew L. Kung; S. A. Schey; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM.


Blood | 2014

Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma

Yu-Tzu Tai; Patrick Mayes; Chirag Acharya; Mike Y. Zhong; Michele Cea; Antonia Cagnetta; Jenny L. Craigen; John Yates; Louise Gliddon; William Fieles; Bao Hoang; James Tunstead; Amanda L. Christie; Andrew L. Kung; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

B-cell maturation antigen (BCMA), highly expressed on malignant plasma cells in human multiple myeloma (MM), has not been effectively targeted with therapeutic monoclonal antibodies. We here show that BCMA is universally expressed on the MM cell surface and determine specific anti-MM activity of J6M0-mcMMAF (GSK2857916), a novel humanized and afucosylated antagonistic anti-BCMA antibody-drug conjugate via a noncleavable linker. J6M0-mcMMAF specifically blocks cell growth via G2/M arrest and induces caspase 3-dependent apoptosis in MM cells, alone and in coculture with bone marrow stromal cells or various effector cells. It strongly inhibits colony formation by MM cells while sparing surrounding BCMA-negative normal cells. J6M0-mcMMAF significantly induces effector cell-mediated lysis against allogeneic or autologous patient MM cells, with increased potency and efficacy compared with the wild-type J6M0 without Fc enhancement. The antibody-dependent cell-mediated cytotoxicity and apoptotic activity of J6M0-mcMMAF is further enhanced by lenalidomide. Importantly, J6M0-mcMMAF rapidly eliminates myeloma cells in subcutaneous and disseminated mouse models, and mice remain tumor-free up to 3.5 months. Furthermore, J6M0-mcMMAF recruits macrophages and mediates antibody-dependent cellular phagocytosis of MM cells. Together, these results demonstrate that GSK2857916 has potent and selective anti-MM activities via multiple cytotoxic mechanisms, providing a promising next-generation immunotherapeutic in this cancer.


Journal of Biological Chemistry | 2012

The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses

Inga Bauer; Alessia Grozio; Denise Lasigliè; Giovanna Basile; Laura Sturla; Mirko Magnone; Giovanna Sociali; Debora Soncini; Irene Caffa; Alessandro Poggi; Gabriele Zoppoli; Michele Cea; Georg Feldmann; Raul Mostoslavsky; Alberto Ballestrero; Franco Patrone; Santina Bruzzone; Alessio Nencioni

Background: Cytokine secretion has unwanted consequences in malignant and in inflammatory disorders. The deacetylase SIRT6 has pro-inflammatory activity, but the underlying mechanisms and its biological significance remain unclear. Results: SIRT6 enhances cytokine secretion and cell motility in pancreatic cancer cells by activating Ca2+ signaling. Conclusion: SIRT6 promotes Ca2+-dependent responses. Significance: SIRT6 inhibitors may help combat malignant and inflammatory disorders. Cytokine secretion by cancer cells contributes to cancer-induced symptoms and angiogenesis. Studies show that the sirtuin SIRT6 promotes inflammation by enhancing TNF expression. Here, we aimed to determine whether SIRT6 is involved in conferring an inflammatory phenotype to cancer cells and to define the mechanisms linking SIRT6 to inflammation. We show that SIRT6 enhances the expression of pro-inflammatory cyto-/chemokines, such as IL8 and TNF, and promotes cell migration in pancreatic cancer cells by enhancing Ca2+ responses. Via its enzymatic activity, SIRT6 increases the intracellular levels of ADP-ribose, an activator of the Ca2+ channel TRPM2. In turn, TRPM2 and Ca2+ are shown to be involved in SIRT6-induced TNF and IL8 expression. SIRT6 increases the nuclear levels of the Ca2+-dependent transcription factor, nuclear factor of activated T cells (NFAT), and cyclosporin A, a calcineurin inhibitor that reduces NFAT activity, reduces TNF and IL8 expression in SIRT6-overexpressing cells. These results implicate a role for SIRT6 in the synthesis of Ca2+-mobilizing second messengers, in the regulation of Ca2+-dependent transcription factors, and in the expression of pro-inflammatory, pro-angiogenic, and chemotactic cytokines. SIRT6 inhibition may help combat cancer-induced inflammation, angiogenesis, and metastasis.


Blood | 2012

Targeting NAD salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition

Michele Cea; Antonia Cagnetta; Mariateresa Fulciniti; Yu-Tzu Tai; Teru Hideshima; Dharminder Chauhan; Aldo M. Roccaro; Antonio Sacco; Teresa Calimeri; Francesca Cottini; Jana Jakubikova; Sun Young Kong; Franco Patrone; Alessio Nencioni; Marco Gobbi; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

Malignant cells have a higher nicotinamide adenine dinucleotide (NAD(+)) turnover rate than normal cells, making this biosynthetic pathway an attractive target for cancer treatment. Here we investigated the biologic role of a rate-limiting enzyme involved in NAD(+) synthesis, Nampt, in multiple myeloma (MM). Nampt-specific chemical inhibitor FK866 triggered cytotoxicity in MM cell lines and patient MM cells, but not normal donor as well as MM patients PBMCs. Importantly, FK866 in a dose-dependent fashion triggered cytotoxicity in MM cells resistant to conventional and novel anti-MM therapies and overcomes the protective effects of cytokines (IL-6, IGF-1) and bone marrow stromal cells. Nampt knockdown by RNAi confirmed its pivotal role in maintenance of both MM cell viability and intracellular NAD(+) stores. Interestingly, cytotoxicity of FK866 triggered autophagy, but not apoptosis. A transcriptional-dependent (TFEB) and independent (PI3K/mTORC1) activation of autophagy mediated FK866 MM cytotoxicity. Finally, FK866 demonstrated significant anti-MM activity in a xenograft-murine MM model, associated with down-regulation of ERK1/2 phosphorylation and proteolytic cleavage of LC3 in tumor cells. Our data therefore define a key role of Nampt in MM biology, providing the basis for a novel targeted therapeutic approach.


PLOS ONE | 2011

Synergistic Interactions between HDAC and Sirtuin Inhibitors in Human Leukemia Cells

Michele Cea; Debora Soncini; Floriana Fruscione; Lizzia Raffaghello; Anna Garuti; Laura Emionite; Eva Moran; Mirko Magnone; Gabriele Zoppoli; Daniele Reverberi; Irene Caffa; Annalisa Salis; Antonia Cagnetta; Micaela Bergamaschi; Salvatore Casciaro; Ivana Pierri; Gianluca Damonte; Filippo Ansaldi; Marco Gobbi; Vito Pistoia; Alberto Ballestrero; Franco Patrone; Santina Bruzzone; Alessio Nencioni

Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD+-independent HDACs are an established therapeutic target, the relevance of NAD+-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.


Blood | 2013

Intracellular NAD+ depletion enhances bortezomib-induced anti-myeloma activity

Antonia Cagnetta; Michele Cea; Teresa Calimeri; Chirag Acharya; Mariateresa Fulciniti; Yu-Tzu Tai; Teru Hideshima; Dharminder Chauhan; Mike Y. Zhong; Franco Patrone; Alessio Nencioni; Marco Gobbi; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD⁺ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD⁺ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD⁺ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD⁺ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib.


Cell Reports | 2015

CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal transition-like transcriptional activation

Aldo M. Roccaro; Yuji Mishima; Antonio Sacco; Michele Moschetta; Yu-Tzu Tai; Jiantao Shi; Yong Zhang; Michaela R. Reagan; Daisy Huynh; Yawara Kawano; Ilyas Sahin; Marco Chiarini; Salomon Manier; Michele Cea; Yosra Aljawai; Siobhan Glavey; Elizabeth A. Morgan; Chin Pan; Franziska Michor; Pina M. Cardarelli; Michelle Kuhne; Irene M. Ghobrial

Extra-medullary disease (EMD) in multiple myeloma (MM) is associated with poor prognosis and resistance to chemotherapy. However, molecular alterations that lead to EMD have not been well defined. We developed bone marrow (BM)- and EMD-prone MM syngeneic cell lines; identified that epithelial-to-mesenchymal transition (EMT) transcriptional patterns were significantly enriched in both clones compared to parental cells, together with higher levels of CXCR4 protein; and demonstrated that CXCR4 enhanced the acquisition of an EMT-like phenotype in MM cells with a phenotypic conversion for invasion, leading to higher bone metastasis and EMD dissemination in vivo. In contrast, CXCR4 silencing led to inhibited tumor growth and reduced survival. Ulocuplumab, a monoclonal anti-CXCR4 antibody, inhibited MM cell dissemination, supported by suppression of the CXCR4-driven EMT-like phenotype. These results suggest that targeting CXCR4 may act as a regulator of EMD through EMT-like transcriptional modulation, thus representing a potential therapeutic strategy to prevent MM disease progression.


Experimental Hematology | 2010

Potent synergistic interaction between the Nampt inhibitor APO866 and the apoptosis activator TRAIL in human leukemia cells

Gabriele Zoppoli; Michele Cea; Debora Soncini; Floriana Fruscione; Justine Rudner; Eva Moran; Irene Caffa; Davide Bedognetti; Giulia Motta; Riccardo Ghio; Fabio Ferrando; Alberto Ballestrero; Silvio Parodi; Claus Belka; Franco Patrone; Santina Bruzzone; Alessio Nencioni

OBJECTIVE The nicotinamide phosphoribosyltransferase (Nampt) inhibitor APO866 depletes intracellular nicotinamide adenine dinucleotide (NAD(+)) and shows promising anticancer activity in preclinical studies. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to plasma membrane receptors DR4 and DR5 and induces apoptosis via caspase-8 and -10. Here we have explored the interaction between APO866 and TRAIL in leukemia cell lines and in primary B-cell chronic lymphocytic leukemia cells. MATERIALS AND METHODS Cells were treated with APO866, TRAIL, or their combination. Viability and mitochondrial transmembrane potential (ΔΨ(m)) were determined by cell staining with propidium iodide and tetramethylrhodamine ethyl ester, respectively, and flow cytometry. Nampt and γ-tubulin levels, as well as caspase-3 cleavage were detected by immunoblotting. DR4 and DR5 expression were assessed by immunostaining and flow cytometry. Caspases were inhibited with zVAD-FMK and zDEVD-FMK; autophagy with 3-methyladenine, LY294002, and wortmannin. Intracellular NAD(+) and adenosine triphosphate (ATP) were measured by cycling assays and high-performance liquid chromatography (HPLC), respectively. RESULTS APO866 induced NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage in leukemia cells, thereby leading to autophagic cell death. TRAIL induced caspase-dependent apoptosis. TRAIL addition to APO866 synergistically increased its activity in leukemia cells by enhancing NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage. No DR5 upregulation at the cell surface in response to APO866 was observed. Remarkably, in healthy leukocytes APO866 and TRAIL were poorly active and failed to show any cooperation. CONCLUSIONS Activation of the extrinsic apoptotic cascade with TRAIL selectively amplifies the sequelae of Nampt inhibition in leukemia cells, and appears as a promising strategy to enhance APO866 activity in hematological malignancies.

Collaboration


Dive into the Michele Cea's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Gobbi

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge