Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Curcio is active.

Publication


Featured researches published by Michele Curcio.


Progress in Neurobiology | 2014

Role of the ubiquitin–proteasome system in brain ischemia: Friend or foe?

Margarida V. Caldeira; Ivan L. Salazar; Michele Curcio; Lorella M.T. Canzoniero; Carlos B. Duarte

The ubiquitin-proteasome system (UPS) is a catalytic machinery that targets numerous cellular proteins for degradation, thus being essential to control a wide range of basic cellular processes and cell survival. Degradation of intracellular proteins via the UPS is a tightly regulated process initiated by tagging a target protein with a specific ubiquitin chain. Neurons are particularly vulnerable to any change in protein composition, and therefore the UPS is a key regulator of neuronal physiology. Alterations in UPS activity may induce pathological responses, ultimately leading to neuronal cell death. Brain ischemia triggers a complex series of biochemical and molecular mechanisms, such as an inflammatory response, an exacerbated production of misfolded and oxidized proteins, due to oxidative stress, and the breakdown of cellular integrity mainly mediated by excitotoxic glutamatergic signaling. Brain ischemia also damages protein degradation pathways which, together with the overproduction of damaged proteins and consequent upregulation of ubiquitin-conjugated proteins, contribute to the accumulation of ubiquitin-containing proteinaceous deposits. Despite recent advances, the factors leading to deposition of such aggregates after cerebral ischemic injury remain poorly understood. This review discusses the current knowledge on the role of the UPS in brain function and the molecular mechanisms contributing to UPS dysfunction in brain ischemia with consequent accumulation of ubiquitin-containing proteins. Chemical inhibitors of the proteasome and small molecule inhibitors of deubiquitinating enzymes, which promote the degradation of proteins by the proteasome, were both shown to provide neuroprotection in brain ischemia, and this apparent contradiction is also discussed in this review.


Growth Factors Journal | 2012

Neuroprotection by GDNF in the ischemic brain

Emília P. Duarte; Michele Curcio; Lorella M.T. Canzoniero; Carlos B. Duarte

The glial cell line-derived neurotrophic factor (GDNF) was first identified as a survival factor for midbrain dopaminergic neurons, but additional studies provided evidences for a role as a trophic factor for other neurons of the central and peripheral nervous systems. GDNF regulates cellular activity through interaction with glycosyl-phosphatidylinositol-anchored cell surface receptors, GDNF family receptor-α1, which might signal through the transmembrane Ret tyrosine receptors or the neural cell adhesion molecule, to promote cell survival, neurite outgrowth, and synaptogenesis. The neuroprotective effect of exogenous GDNF has been shown in different experimental models of focal and global brain ischemia, by local administration of the trophic factor, using viral vectors carrying the GDNF gene and by transplantation of GDNF-expressing cells. These different strategies and the mechanisms contributing to neuroprotection by GDNF are discussed in this review. Importantly, neuroprotection by GDNF was observed even when administered after the ischemic injury.


PLOS ONE | 2013

BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons.

Carlos V. Melo; Miranda Mele; Michele Curcio; Diogo Comprido; Carla G. Silva; Carlos B. Duarte

BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP.


Cell Death and Disease | 2012

Effects of long-term treatment with pioglitazone on cognition and glucose metabolism of PS1-KI, 3xTg-AD, and wild-type mice

F Masciopinto; N. Di Pietro; Carlo Corona; Manuela Bomba; Caterina Pipino; Michele Curcio; A. Di Castelnuovo; Domenico Ciavardelli; Elena Silvestri; L Mt Canzoniero; I Sekler; Assunta Pandolfi; Stefano L. Sensi

In this study, we investigated the effects of long-term (9-month) treatment with pioglitazone (PIO; 20 mg/kg/d) in two animal models of Alzheimer’s disease (AD)-related neural dysfunction and pathology: the PS1-KIM146V (human presenilin-1 M146V knock-in mouse) and 3xTg-AD (triple transgenic mouse carrying AD-linked mutations) mice. We also investigated the effects on wild-type (WT) mice. Mice were monitored for body mass changes, fasting glycemia, glucose tolerance, and studied for changes in brain mitochondrial enzyme activity (complexes I and IV) as well as energy metabolism (lactate dehydrogenase (LDH)). Cognitive effects were investigated with the Morris water maze (MWM) test and the object recognition task (ORT). Behavioral analysis revealed that PIO treatment promoted positive cognitive effects in PS1-KI female mice. These effects were associated with normalization of peripheral gluco-regulatory abnormalities that were found in untreated PS1-KI females. PIO-treated PS1-KI females also showed no statistically significant alterations in brain mitochondrial enzyme activity but significantly increased reverse LDH activity.PIO treatment produced no effects on cognition, glucose metabolism, or mitochondrial functioning in 3xTg-AD mice. Finally, PIO treatment promoted enhanced short-term memory performance in WT male mice, a group that did not show deregulation of glucose metabolism but that showed decreased activity of complex I in hippocampal and cortical mitochondria. Overall, these results indicate metabolically driven cognitive-enhancing effects of PIO that are differentially gender-related among specific genotypes.


Neurobiology of Disease | 2015

Pyruvate prevents the development of age-dependent cognitive deficits in a mouse model of Alzheimer's disease without reducing amyloid and tau pathology

Elisa Isopi; Alberto Granzotto; Carlo Corona; Manuela Bomba; Domenico Ciavardelli; Michele Curcio; Lorella M.T. Canzoniero; Riccardo Navarra; Rossano Lattanzio; Mauro Piantelli; Stefano L. Sensi

Amyloid-β (Aβ) deposition and tau-dependent pathology are key features of Alzheimers disease (AD). However, to date, approaches aimed at counteracting these two pathogenic factors have produced only modest therapeutic outcomes. More effective therapies should therefore consider additional pathogenic factors like energy production failure, hyperexcitability and excitotoxicity, oxidative stress, deregulation of metal ion homeostasis, and neuroinflammation. Pyruvate is an energy substrate associated with neuroprotective properties. In this study, we evaluated protective effects of long-term administration of pyruvate in 3xTg-AD mice, a preclinical AD model that develops amyloid-β- and tau-dependent pathology. Chronic (9 months) treatment with pyruvate inhibited short and long-term memory deficits in 6 and 12 months old 3xTg-AD mice as assessed with the Morris water maze test. Pyruvate had no effects on intraneuronal amyloid-β accumulation and, surprisingly, the molecule increased deposition of phosphorylated tau. Pyruvate did not change aerobic or anaerobic metabolisms but decreased lipid peroxidation, counteracted neuronal hyperexcitability, decreased baseline levels of oxidative stress, and also reduced reactive oxygen species-driven elevations of intraneuronal Zn(2+) as well as glutamate receptor-mediated deregulation of intraneuronal Ca(2+). Thus, pyruvate promotes beneficial cognitive effects without affecting Aβ and tau pathology. The molecule mainly promotes a reduction of hyperexcitability, oxidative stress while favors the regulation of intraneuronal Ca(2+) and Zn(2+) homeostasis rather than acting as energy substrate. Pyruvate can be therefore a valuable, safe, and affordable pharmacological tool to be associated with classical anti-Aβ and tau drugs to counteract the development and progression of AD-related cognitive deficits and neuronal loss.


Biochimica et Biophysica Acta | 2013

Excitotoxic stimulation downregulates the ubiquitin–proteasome system through activation of NMDA receptors in cultured hippocampal neurons

Margarida V. Caldeira; Michele Curcio; Graciano Leal; Ivan L. Salazar; Miranda Mele; Ana Rita Santos; Carlos V. Melo; Paulo Pereira; Lorella M.T. Canzoniero; Carlos B. Duarte

Overactivation of glutamate receptors contributes to neuronal damage (excitotoxicity) in ischemic stroke but the detailed mechanisms are not fully elucidated. Brain ischemia is also characterized by an impairment of the activity of the proteasome, one of the major proteolytic systems in neurons. We found that excitotoxic stimulation with glutamate rapidly decreases ATP levels and the proteasome activity, and induces the disassembly of the 26S proteasome in cultured rat hippocampal neurons. Downregulation of the proteasome activity, leading to an accumulation of ubiquitinated proteins, was mediated by calcium entry through NMDA receptors and was only observed in the nuclear fraction. Furthermore, excitotoxicity-induced proteasome inhibition was partially sensitive to cathepsin-L inhibition and was specifically induced by activation of extrasynaptic NMDA receptors. Oxygen and glucose deprivation induced neuronal death and downregulated the activity of the proteasome by a mechanism dependent on the activation of NMDA receptors. Since deubiquitinating enzymes may regulate proteins half-life by counteracting ubiquitination, we also analyzed how their activity is regulated under excitotoxic conditions. Glutamate stimulation decreased the total deubiquitinase activity in hippocampal neurons, but was without effect on the activity of Uch-L1, showing that not all deubiquitinases are affected. These results indicate that excitotoxic stimulation with glutamate has multiple effects on the ubiquitin-proteasome system which may contribute to the demise process in brain ischemia and in other neurological disorders.


Progress in Neurobiology | 2016

Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury.

Michele Curcio; Ivan L. Salazar; Miranda Mele; Lorella M.T. Canzoniero; Carlos B. Duarte

The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.


Neurochemical Research | 2016

The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle

Ivan L. Salazar; Margarida V. Caldeira; Michele Curcio; Carlos B. Duarte

Long-term synaptic plasticity in the hippocampus is thought to underlie the formation of certain forms of memory, including spatial memory. The early phase of long-term synaptic potentiation and synaptic depression depends on post-translational modifications of synaptic proteins, while protein synthesis is also required for the late-phase of both forms of synaptic plasticity (L-LTP and L-LTD). Numerous pieces of evidence show a role for different types of proteases in synaptic plasticity, further increasing the diversity of mechanisms involved in the regulation of the intracellular and extracellular protein content. The cleavage of extracellular proteins is coupled to changes in postsynaptic intracellular mechanisms, and additional alterations in this compartment result from the protease-mediated targeting of intracellular proteins. Both mechanisms contribute to initiate signaling cascades that drive downstream pathways coupled to synaptic plasticity. In this review we summarize the evidence pointing to a role for extracellular and intracellular proteases, with distinct specificities, in synaptic plasticity. Where in the cells the proteases are located, and how they are regulated is also discussed. The combined actions of proteases and translation mechanisms contribute to a tight control of the synaptic proteome relevant for long-term synaptic potentiation and synaptic depression in the hippocampus. Additional studies are required to elucidate the mechanisms whereby these changes in the synaptic proteome are related with plasticity phenomena.


Cell Death and Disease | 2015

Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons.

Michele Curcio; Ivan L. Salazar; Ana R. Inácio; Emília P. Duarte; Lorella M.T. Canzoniero; Carlos B. Duarte

The glial cell line-derived neurotrophic factor (GDNF) has an important role in neuronal survival through binding to the GFRα1 (GDNF family receptor alpha-1) receptor and activation of the receptor tyrosine kinase Ret. Transient brain ischemia alters the expression of the GDNF signaling machinery but whether the GDNF receptor proteins are also affected, and the functional consequences, have not been investigated. We found that excitotoxic stimulation of cultured hippocampal neurons leads to a calpain-dependent downregulation of the long isoform of Ret (Ret51), but no changes were observed for Ret9 or GFRα1 under the same conditions. Cleavage of Ret51 by calpains was selectively mediated by activation of the extrasynaptic pool of N-methyl-d-aspartate receptors and leads to the formation of a stable cleavage product. Calpain-mediated cleavage of Ret51 was also observed in hippocampal neurons subjected to transient oxygen and glucose deprivation (OGD), a model of global brain ischemia, as well as in the ischemic region in the cerebral cortex of mice exposed to transient middle cerebral artery occlusion. Although the reduction of Ret51 protein levels decreased the total GDNF-induced receptor activity (as determined by assessing total phospho-Ret51 protein levels) and their downstream signaling activity, the remaining receptors still showed an increase in phosphorylation after incubation of hippocampal neurons with GDNF. Furthermore, GDNF protected hippocampal neurons when present before, during or after OGD, and the effects under the latter conditions were more significant in neurons transfected with human Ret51. These results indicate that the loss of Ret51 in brain ischemia partially impairs the neuroprotective effects of GDNF.


Cytotherapy | 2016

Human Wharton's jelly–derived mesenchymal stromal cells engineered to secrete Epstein-Barr virus interleukin-10 show enhanced immunosuppressive properties

Paola Quaranta; D Focosi; Marilena Di Iesu; Chiara Cursi; Alessandra Zucca; Michele Curcio; Simone Lapi; Linda Boldrini; Giulia Stampacchia; Aldo Paolicchi; Fabrizio Scatena; Giulia Freer; Mauro Pistello

BACKGROUND AIMS Mesenchymal stromal cells (MSCs) modulate the immune response and represent a potential treatment for inflammatory and autoimmune diseases. We hypothesized that this feature could be potentiated by co-administering anti-inflammatory cytokines. In this article, we asked whether engineering of Wharton Jelly-derived human MSCs (WJ-hMSCs) to express an anti-inflammatory cytokine increases cell immunomodulatory properties without altering their native features. METHODS We used Epstein-Barr virus-derived interleukin-10 (vIL-10), which shares some immunosuppressive properties with human IL-10 but lacks immunostimulatory activity. Engineering was accomplished by transducing WJ-hMSCs with a self-inactivating feline immunodeficiency virus-derived vector co-expressing vIL-10 and herpes simplex virus type-1 thymidine kinase (TK). TK was added to allow future tracking of WJ-hMSC in vivo by positron electron tomography (PET). RESULTS The results show that (i) expression of TK and/or vIL-10 does not change WJ-hMSC phenotypic and functional properties; (ii) vIL-10 is secreted, biologically active and enhances the immunosuppressing functions of WJ-hMSCs; (iii) v-IL10 and TK can be produced simultaneously by the same cells and do not interfere with each other. DISCUSSION WJ-hMSCs engineered to secrete vIL-10 could be a powerful tool for adoptive cell therapy of immune-mediated diseases, and therefore, additional studies are warranted to confirm their efficacy in suitable animal disease models.

Collaboration


Dive into the Michele Curcio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge