Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miranda Mele is active.

Publication


Featured researches published by Miranda Mele.


PLOS ONE | 2013

BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons.

Carlos V. Melo; Miranda Mele; Michele Curcio; Diogo Comprido; Carla G. Silva; Carlos B. Duarte

BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP.


The Journal of Neuroscience | 2015

Differential Role of the Proteasome in the Early and Late Phases of BDNF-Induced Facilitation of LTP

Ana Rita Santos; Miranda Mele; Sandra H. Vaz; Blanka Kellermayer; Maddalena Grimaldi; Mariana Colino-Oliveira; Diogo M. Rombo; Diogo Comprido; Ana M. Sebastião; Carlos B. Duarte

The neurotrophin brain-derived neurotrophic factor (BDNF) mediates activity-dependent long-term changes of synaptic strength in the CNS. The effects of BDNF are partly mediated by stimulation of local translation, with consequent alterations in the synaptic proteome. The ubiquitin-proteasome system (UPS) also plays an important role in protein homeostasis at the synapse by regulating synaptic activity. However, whether BDNF acts on the UPS to mediate the effects on long-term synaptic potentiation (LTP) has not been investigated. In the present study, we show similar and nonadditive effects of BDNF and proteasome inhibition on the early phase of synaptic potentiation (E-LTP) induced by theta-burst stimulation of rat hippocampal CA1 synapses. The effects of BDNF were blocked by the proteasome activator IU1, suggesting that the neurotrophin acts by decreasing proteasome activity. Accordingly, BDNF downregulated the proteasome activity in cultured hippocampal neurons and in hippocampal synaptoneurosomes. Furthermore, BDNF increased the activity of the deubiquitinating enzyme UchL1 in synaptoneurosomes and upregulated free ubiquitin. In contrast to the effects on posttetanic potentiation, proteasome activity was required for BDNF-mediated LTP. These results show a novel role for BDNF in UPS regulation at the synapse, which is likely to act together with the increased translation activity in the regulation of the synaptic proteome during E-LTP.


Biochimica et Biophysica Acta | 2013

Excitotoxic stimulation downregulates the ubiquitin–proteasome system through activation of NMDA receptors in cultured hippocampal neurons

Margarida V. Caldeira; Michele Curcio; Graciano Leal; Ivan L. Salazar; Miranda Mele; Ana Rita Santos; Carlos V. Melo; Paulo Pereira; Lorella M.T. Canzoniero; Carlos B. Duarte

Overactivation of glutamate receptors contributes to neuronal damage (excitotoxicity) in ischemic stroke but the detailed mechanisms are not fully elucidated. Brain ischemia is also characterized by an impairment of the activity of the proteasome, one of the major proteolytic systems in neurons. We found that excitotoxic stimulation with glutamate rapidly decreases ATP levels and the proteasome activity, and induces the disassembly of the 26S proteasome in cultured rat hippocampal neurons. Downregulation of the proteasome activity, leading to an accumulation of ubiquitinated proteins, was mediated by calcium entry through NMDA receptors and was only observed in the nuclear fraction. Furthermore, excitotoxicity-induced proteasome inhibition was partially sensitive to cathepsin-L inhibition and was specifically induced by activation of extrasynaptic NMDA receptors. Oxygen and glucose deprivation induced neuronal death and downregulated the activity of the proteasome by a mechanism dependent on the activation of NMDA receptors. Since deubiquitinating enzymes may regulate proteins half-life by counteracting ubiquitination, we also analyzed how their activity is regulated under excitotoxic conditions. Glutamate stimulation decreased the total deubiquitinase activity in hippocampal neurons, but was without effect on the activity of Uch-L1, showing that not all deubiquitinases are affected. These results indicate that excitotoxic stimulation with glutamate has multiple effects on the ubiquitin-proteasome system which may contribute to the demise process in brain ischemia and in other neurological disorders.


Progress in Neurobiology | 2016

Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury.

Michele Curcio; Ivan L. Salazar; Miranda Mele; Lorella M.T. Canzoniero; Carlos B. Duarte

The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.


Neurobiology of Disease | 2014

GABAA receptor dephosphorylation followed by internalization is coupled to neuronal death in in vitro ischemia

Miranda Mele; Luís Mário Ribeiro; Ana R. Inácio; Tadeusz Wieloch; Carlos B. Duarte

Cerebral ischemia is characterized by an early disruption of GABAergic neurotransmission contributing to an imbalance of the excitatory/inhibitory equilibrium and neuronal death, but the molecular mechanisms involved are not fully understood. Here we report a downregulation of GABA(A) receptor (GABA(A)R) expression, affecting both mRNA and protein levels of GABA(A)R subunits, in hippocampal neurons subjected to oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Similar alterations in the abundance of GABA(A)R subunits were observed in in vivo brain ischemia. OGD reduced the interaction of surface GABA(A)R with the scaffold protein gephyrin, followed by clathrin-dependent receptor internalization. Internalization of GABA(A)R was dependent on glutamate receptor activation and mediated by dephosphorylation of the β3 subunit at serine 408/409. Expression of phospho-mimetic mutant GABA(A)R β3 subunits prevented receptor internalization and protected hippocampal neurons from ischemic cell death. The results show a key role for β3 GABA(A)R subunit dephosphorylation in the downregulation of GABAergic synaptic transmission in brain ischemia, contributing to neuronal death. GABA(A)R phosphorylation might be a therapeutic target to preserve synaptic inhibition in brain ischemia.


Journal of Neurochemistry | 2016

Role of GABAAR trafficking in the plasticity of inhibitory synapses

Miranda Mele; Graciano Leal; Carlos B. Duarte

Neuronal excitability depends on the balance between inhibitory and excitatory neurotransmission, which in the CNS are mainly mediated by GABA and glutamate respectively. The plasticity of glutamatergic synapses and the underlying molecular mechanisms have been characterized to a large extent. In comparison, much less is known regarding the plasticity of GABAergic synapses, which is also important in the maintenance of the excitatory/inhibitory balance. GABAergic synapses, similarly to the glutamatergic synapses, adjust their strength depending on the pattern of neuronal activity. These alterations take place in the pre‐ and postsynaptic compartments, and short‐ and long‐term alterations have been described. At the postsynaptic level the plasticity of inhibitory synapses is largely mediated by modulation of the expression, localization and function of GABAA receptors, by mechanisms involving the participation of scaffold proteins and structural molecules. This review is focused on the key mechanisms that regulate GABAA receptor trafficking in response to alterations in neuronal activity or to stimulation of plasma membrane receptors. These alterations in GABAergic neurotransmission are important in the refinement of the pattern of activity of neuronal networks.


Neurobiology of Disease | 2011

Cleavage of the Vesicular Glutamate Transporters Under Excitotoxic Conditions

Andrea C. Lobo; João Gomes; Tatiana Catarino; Miranda Mele; Pedro Fernandez; Ana R. Inácio; Ben A. Bahr; Armanda E. Santos; Tadeusz Wieloch; Ana Luísa Carvalho; Carlos B. Duarte

Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters (VGLUTs), and alterations in the transporters expression directly regulate neurotransmitter release. We investigated changes in VGLUT1 and VGLUT2 protein levels after ischemic and excitotoxic insults. The results show that VGLUT2 is cleaved by calpains after excitotoxic stimulation of hippocampal neurons with glutamate, whereas VGLUT1 is downregulated to a lower extent. VGLUT2 was also cleaved by calpains after oxygen/glucose deprivation (OGD), and downregulated after middle cerebral artery occlusion (MCAO) and intrahippocampal injection of kainate. In contrast, VGLUT1 was not affected after OGD. Incubation of isolated synaptic vesicles with recombinant calpain also induced VGLUT2 cleavage, with a little effect observed for VGLUT1. N-terminal sequencing analysis showed that calpain cleaves VGLUT2 in the C-terminus, at Asn(534) and Lys(542). The truncated GFP-VGLUT2 forms were found to a great extent in non-synaptic regions along neurites, when compared to GFP-VGLUT2. These findings show that excitotoxic and ischemic insults downregulate VGLUT2, which is likely to affect glutamatergic transmission and cell death, especially in the neonatal period when the transporter is expressed at higher levels.


Molecular Neurobiology | 2016

Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death.

João T. Costa; Miranda Mele; Márcio S. Baptista; João Gomes; Karsten Ruscher; Rui Jorge Nobre; Luís Pereira de Almeida; Tadeusz Wieloch; Carlos B. Duarte

GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the central nervous system, and changes in GABAergic neurotransmission modulate the activity of neuronal networks. Gephyrin is a scaffold protein responsible for the traffic and synaptic anchoring of GABAA receptors (GABAAR); therefore, changes in gephyrin expression and oligomerization may affect the activity of GABAergic synapses. In this work, we investigated the changes in gephyrin protein levels during brain ischemia and in excitotoxic conditions, which may affect synaptic clustering of GABAAR. We found that gephyrin is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, as well as after intrahippocampal injection of kainate, giving rise to a stable cleavage product. Gephyrin cleavage was also observed in cultured hippocampal neurons subjected to transient oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, and after transient middle cerebral artery occlusion (MCAO) in mice, a model of focal brain ischemia. Furthermore, a truncated form of gephyrin decreased the synaptic clustering of the protein, reduced the synaptic pool of GABAAR containing γ2 subunits and upregulated OGD-induced cell death in hippocampal cultures. Our results show that excitotoxicity and brain ischemia downregulate full-length gephyrin with a concomitant generation of truncated products, which affect synaptic clustering of GABAAR and cell death.


Molecular Neurobiology | 2017

Downregulation of GABAA Receptor Recycling Mediated by HAP1 Contributes to Neuronal Death in In Vitro Brain Ischemia

Miranda Mele; Maria Cristina Aspromonte; Carlos B. Duarte

Downregulation of GABAergic synaptic transmission contributes to the increase in overall excitatory activity in the ischemic brain. A reduction of GABAA receptor (GABAAR) surface expression partly accounts for this decrease in inhibitory activity, but the mechanisms involved are not fully elucidated. In this work, we investigated the alterations in GABAAR trafficking in cultured rat hippocampal neurons subjected to oxygen/glucose deprivation (OGD), an in vitro model of global brain ischemia, and their impact in neuronal death. The traffic of GABAAR was evaluated after transfection of hippocampal neurons with myc-tagged GABAAR β3 subunits. OGD decreased the rate of GABAAR β3 subunit recycling and reduced the interaction of the receptors with HAP1, a protein involved in the recycling of the receptors. Furthermore, OGD induced a calpain-mediated cleavage of HAP1. Transfection of hippocampal neurons with HAP1A or HAP1B isoforms reduced the OGD-induced decrease in surface expression of GABAAR β3 subunits, and HAP1A maintained the rate of receptor recycling. Furthermore, transfection of hippocampal neurons with HAP1 significantly decreased OGD-induced cell death. These results show a key role for HAP1 protein in the downmodulation of GABAergic neurotransmission during cerebral ischemia, which contributes to neuronal demise.


Neurobiology of Disease | 2016

Multiple domains in the C-terminus of NMDA receptor GluN2B subunit contribute to neuronal death following in vitro ischemia.

M. Vieira; Jeannette Schmidt; Joana S. Ferreira; Kevin She; Shinichiro Oku; Miranda Mele; Armanda E. Santos; Carlos B. Duarte; Ann Marie Craig; Ana Luísa Carvalho

Global cerebral ischemia induces selective degeneration of specific subsets of neurons throughout the brain, particularly in the hippocampus and cortex. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca(2+) overload and ultimately neuronal demise. N-methyl-d-aspartate receptors (NMDARs) are considered to be largely responsible for excitotoxic injury due to their high Ca(2+) permeability. In the hippocampus and cortex, these receptors are most prominently composed of combinations of two GluN1 subunits and two GluN2A and/or GluN2B subunits. Due to the controversy regarding the differential role of GluN2A and GluN2B subunits in excitotoxic cell death, we investigated the role of GluN2B in the activation of pro-death signaling following an in vitro model of global ischemia, oxygen and glucose deprivation (OGD). For this purpose, we used GluN2B(-/-) mouse cortical cultures and observed that OGD-induced damage was reduced in these neurons, and partially prevented in wild-type rat neurons by a selective GluN2B antagonist. Notably, we found a crucial role of the C-terminal domain of the GluN2B subunit in triggering excitotoxic signaling. Indeed, expression of YFP-GluN2B C-terminus mutants for the binding sites to post-synaptic density protein 95 (PSD95), Ca(2+)-calmodulin kinase IIα (CaMKIIα) or clathrin adaptor protein 2 (AP2) failed to mediate neuronal death in OGD conditions. We focused on the GluN2B-CaMKIIα interaction and found a determinant role of this interaction in OGD-induced death. Inhibition or knock-down of CaMKIIα exerted a neuroprotective effect against OGD-induced death, whereas overexpression of this kinase had a detrimental effect. Importantly, in comparison with neurons overexpressing wild-type CaMKIIα, neurons overexpressing a mutant form of the kinase (CaMKII-I205K), unable to interact with GluN2B, were partially protected against OGD-induced damage. Taken together, our results identify crucial determinants in the C-terminal domain of GluN2B subunits in promoting neuronal death in ischemic conditions. These mechanisms underlie the divergent roles of the GluN2A- and GluN2B-NMDARs in determining neuronal fate in cerebral ischemia.

Collaboration


Dive into the Miranda Mele's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge