Michele Giannattasio
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michele Giannattasio.
Journal of Biological Chemistry | 2005
Michele Giannattasio; Federico Lazzaro; Paolo Plevani; Marco Muzi-Falconi
The cellular response to DNA lesions entails the recruitment of several checkpoint and repair factors to damaged DNA, and chromatin modifications may play a role in this process. Here we show that in Saccharomyces cerevisiae epigenetic modification of histones is required for checkpoint activity in response to a variety of genotoxic stresses. We demonstrate that ubiquitination of histone H2B on lysine 123 by the Rad6-Bre1 complex, is necessary for activation of Rad53 kinase and cell cycle arrest. We found a similar requirement for Dot1-dependent methylation of histone H3. Loss of H3-Lys79 methylation does not affect Mec1 activation, whereas it renders cells checkpoint-defective by preventing phosphorylation of Rad9. Such results suggest that histone modifications may have a role in checkpoint function by modulating the interactions of Rad9 with chromatin and active Mec1 kinase.
Journal of Biological Chemistry | 2005
Simone Sabbioneda; Brenda K. Minesinger; Michele Giannattasio; Paolo Plevani; Marco Muzi-Falconi
The use of translesion synthesis (TLS) polymerases to bypass DNA lesions during replication constitutes an important mechanism to restart blocked/stalled DNA replication forks. Because TLS polymerases generally have low fidelity on undamaged DNA, the cell must regulate the interaction of TLS polymerases with damaged versus undamaged DNA to maintain genome integrity. The Saccharomyces cerevisiae checkpoint proteins Ddc1, Rad17, and Mec3 form a clamp-like structure (the 9-1-1 clamp) that has physical similarity to the homotrimeric sliding clamp proliferating cell nuclear antigen, which interacts with and promotes the processivity of the replicative DNA polymerases. In this work, we demonstrate both an in vivo and in vitro physical interaction between the Mec3 and Ddc1 subunits of the 9-1-1 clamp and the Rev7 subunit of the Polζ TLS polymerase. In addition, we demonstrate that loss of Mec3, Ddc1, or Rad17 results in a decrease in Polζ-dependent spontaneous mutagenesis. These results suggest that, in addition to its checkpoint signaling role, the 9-1-1 clamp may physically regulate Polζ-dependent mutagenesis by controlling the access of Polζ to damaged DNA.
The EMBO Journal | 2004
Michele Giannattasio; Federico Lazzaro; Maria Pia Longhese; Paolo Plevani; Marco Muzi-Falconi
The mechanisms used by checkpoints to identify DNA lesions are poorly understood and may involve the function of repair proteins. Looking for mutants specifically defective in activating the checkpoint following UV lesions, but proficient in the response to methyl methane sulfonate and double‐strand breaks, we isolated cdu1‐1, which is allelic to RAD14, the homolog of human XPA, involved in lesion recognition during nucleotide excision repair (NER). Rad14 was also isolated as a partner of the Ddc1 checkpoint protein in a two‐hybrid screening, and physical interaction was proven by co‐immunoprecipitation. We show that lesion recognition is not sufficient for checkpoint activation, but processing, carried out by repair factors, is required for recruiting checkpoint proteins to damaged DNA. Mutations affecting the core NER machinery abolish G1 and G2 checkpoint responses to UV, preventing activation of the Mec1 kinase and its binding to chromosomes. Conversely, elimination of transcription‐coupled or global genome repair alone does not affect checkpoints, suggesting a possible interpretation for the heterogeneity in cancer susceptibility observed in different NER syndrome patients.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Federica Marini; Tiziana Nardo; Michele Giannattasio; Mario Minuzzo; Miria Stefanini; Paolo Plevani; Marco Muzi Falconi
Eukaryotic cells respond to a variety of DNA insults by triggering a common signal transduction cascade, known as checkpoint response, which temporarily halts cell-cycle progression. Although the main players involved in the cascade have been identified, there is still uncertainty about the nature of the structures that activate these surveillance mechanisms. To understand the role of nucleotide excision repair (NER) in checkpoint activation, we analyzed the UV-induced phosphorylation of the key checkpoint proteins Chk1 and p53, in primary fibroblasts from patients with xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy (TTD), or UV light-sensitive syndrome. These disorders are due to defects in transcription-coupled NER (TC-NER) and/or global genome NER (GG-NER), the NER subpathways repairing the transcribed strand of active genes or the rest of the genome, respectively. We show here that in G0/G1 and G2/M phases of the cell cycle, triggering of the DNA damage cascade requires recognition and processing of the lesions by the GG-NER. Loss of TC-NER does not affect checkpoint activation. Mutations in XPD, XPB, and in TTDA, encoding subunits of the TFIIH complex, involved in both transcription and NER, impair checkpoint triggering. The only exception is represented by mutations in XPD, resulting in combined features of XP and CS (XP/CS) that lead to activation of the checkpoint cascade after UV radiation. Inhibition of RNA polymerase II transcription significantly reduces the phosphorylation of key checkpoint factors in XP/CS fibroblasts on exposure to UV damage.
Molecular and Cellular Biology | 2008
Fabio Puddu; Magda Granata; Lisa di Nola; Alessia Balestrini; Gabriele Piergiovanni; Federico Lazzaro; Michele Giannattasio; Paolo Plevani; Marco Muzi-Falconi
ABSTRACT Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents H3-K79 methylation, leading to a checkpoint defect in the G1 phase of the cell cycle and to a reduction of checkpoint activation in mitosis, suggesting that another pathway contributes to Rad9 recruitment in M phase. We found that the replication factor Dpb11 is the keystone of this second pathway. dot1Δ dpb11-1 mutant cells are sensitive to UV or Zeocin treatment and cannot activate Rad53 if irradiated in M phase. Our data suggest that Dpb11 is held in proximity to damaged DNA through an interaction with the phosphorylated 9-1-1 complex, leading to Mec1-dependent phosphorylation of Rad9. Dpb11 is also phosphorylated after DNA damage, and this modification is lost in a nonphosphorylatable ddc1-T602A mutant. Finally, we show that, in vivo, Dpb11 cooperates with Dot1 in promoting Rad9 phosphorylation but also contributes to the full activation of Mec1 kinase.
DNA Repair | 2009
Federico Lazzaro; Michele Giannattasio; Fabio Puddu; Magda Granata; Achille Pellicioli; Paolo Plevani; Marco Muzi-Falconi
In response to genomic insults cells trigger a signal transduction pathway, known as DNA damage checkpoint, whose role is to help the cell to cope with the damage by coordinating cell cycle progression, DNA replication and DNA repair mechanisms. Accumulating evidence suggests that activation of the first checkpoint kinase in the cascade is not due to the lesion itself, but it requires recognition and initial processing of the lesion by a specific repair mechanism. Repair enzymes likely convert a variety of physically and chemically different lesions to a unique common structure, a ssDNA region, which is the checkpoint triggering signal. Checkpoint kinases can modify the activity of repair mechanisms, allowing for efficient repair, on one side, and modulating the generation of the ssDNA signal, on the other. This strategy may be important to allow the most effective repair and a prompt recovery from the damage condition. Interestingly, at least in some cases, if the damage level is low enough the cell can deal with the lesions and it does not need to activate the checkpoint response. On the other hand if damage level is high or if the lesions are not rapidly repairable, checkpoint mechanisms become important for cell survival and preservation of genome integrity.
Nature Structural & Molecular Biology | 2014
Michele Giannattasio; Katharina Zwicky; Cindy Follonier; Marco Foiani; Massimo Lopes; Dana Branzei
Template switching (TS) mediates damage bypass via a recombination-related mechanism involving PCNA polyubiquitination and polymerase δ–dependent DNA synthesis. Using two-dimensional gel electrophoresis and EM, here we characterize TS intermediates arising in Saccharomyces cerevisiae at a defined chromosome locus, identifying five major families of intermediates. Single-stranded DNA gaps of 150–200 nt, and not DNA ends, initiate TS by strand invasion. This causes reannealing of the parental strands and exposure of the nondamaged newly synthesized chromatid, which serves as a replication template for the other blocked nascent strand. Structures resembling double Holliday junctions, postulated to be central double-strand break–repair intermediates but so far visualized only in meiosis, mediate late stages of TS before being processed to hemicatenanes. Our results reveal the DNA transitions accounting for recombination-mediated DNA-damage tolerance in mitotic cells and replication under conditions of genotoxic stress.
BioTechniques | 2006
Faustino Vidal-Aroca; Michele Giannattasio; Elisa Brunelli; Alessandro Vezzoli; Paolo Plevani; Marco Muzi-Falconi; Giovanni Bertoni
(shaded bars; left scale) are presented beside β-gal activity units determined on the indicated strains in the same conditions by ONPG-based assays (empty bars; right scale), performed using the traditional Miller method for bacteria (3) and crude protein extracts for yeast (1). MUG, 4-methylumbelliferyl β-d-galactopyranoside; ONPG, o-nitrophenyl-β-d-galactopyranoside; β-gal; β-galactosidase. BENCHMARKS
The Scientific World Journal | 2003
Marco Muzi-Falconi; Michele Giannattasio; Marco Foiani; Paolo Plevani
DNA polymerase _ (pol _) holds a special position among the growing family of eukaryotic DNA polymerases. In fact, pol _ is associated with DNA primase to form a four subunit complex and, as a consequence, is the only enzyme able to start DNA synthesis de novo. Because of this peculiarity the major role of the DNA polymerase _-primase complex (pol-prim) is in the initiation of DNA replication at chromosomal origins and in the discontinuous synthesis of Okazaki fragments on the lagging strand of the replication fork. However, pol-prim seems to play additional roles in other complex cellular processes, such as the response to DNA damage, telomere maintenance, and the epigenetic control of higher order chromatin assembly.
PLOS Genetics | 2011
Kim Engels; Michele Giannattasio; Marco Muzi-Falconi; Massimo Lopes; Stefano Ferrari
Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined role under DNA replication stress. Exonuclease 1 (Exo1) processes stalled replication forks in checkpoint-defective yeast cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-3-deficient cells fail to induce Mec1-dependent Exo1 hyperphosphorylation and accumulate Exo1-dependent ssDNA gaps at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication stress.