Michele Miragoli
University of Parma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michele Miragoli.
Science | 2010
Viacheslav O. Nikolaev; Alexey Moshkov; Alexander R. Lyon; Michele Miragoli; Pavel Novak; Helen Paur; Martin J. Lohse; Yuri E. Korchev; Sian E. Harding; Julia Gorelik
Heart Cell Signaling in 3D A healthy heart relies on the proper transduction of cellular signals through the β1- and β2-adrenergic receptors (βARs), which are located on the surface of the hearts muscle cells (cardiomyocytes). The surface of these cells resembles a highly organized series of hills and valleys and it has been unclear whether this topography plays a role in the βAR signaling events that are critical to cell function. Nikolaev et al. (p. 1653, published online 25 February; see Perspective by Dorn) monitored the cyclic adenosine monophosphate (cAMP) signals generated by the βARs in living cardiomyocytes. In cells from healthy rats and from rats with heart failure, the β1ARs were localized across the entire cell surface. In contrast, the spatial localization of the β2ARs differed in healthy and failing cells. In healthy cardiomyocytes, the β2ARs resided exclusively within surface invaginations called transverse tubules, thereby producing spatially confined cAMP signals, whereas in failing cardiomyocytes, the β2ARs redistributed to other cell surface areas, thereby producing diffuse cAMP signals. Thus, changes in the spatial localization of β2AR-induced cAMP signaling may contribute to heart failure. A change in the distribution of a signaling molecule on the surface of heart muscle cells may contribute to heart failure. The β1- and β2-adrenergic receptors (βARs) on the surface of cardiomyocytes mediate distinct effects on cardiac function and the development of heart failure by regulating production of the second messenger cyclic adenosine monophosphate (cAMP). The spatial localization in cardiomyocytes of these βARs, which are coupled to heterotrimeric guanine nucleotide–binding proteins (G proteins), and the functional implications of their localization have been unclear. We combined nanoscale live-cell scanning ion conductance and fluorescence resonance energy transfer microscopy techniques and found that, in cardiomyocytes from healthy adult rats and mice, spatially confined β2AR-induced cAMP signals are localized exclusively to the deep transverse tubules, whereas functional β1ARs are distributed across the entire cell surface. In cardiomyocytes derived from a rat model of chronic heart failure, β2ARs were redistributed from the transverse tubules to the cell crest, which led to diffuse receptor-mediated cAMP signaling. Thus, the redistribution of β2ARs in heart failure changes compartmentation of cAMP and might contribute to the failing myocardial phenotype.
Circulation Research | 2015
Montserrat Climent; Manuela Quintavalle; Michele Miragoli; Ju Chen; Gianluigi Condorelli; Leonardo Elia
RATIONALE The miR-143/145 cluster is highly expressed in smooth muscle cells (SMCs), where it regulates phenotypic switch and vascular homeostasis. Whether it plays a role in neighboring endothelial cells (ECs) is still unknown. OBJECTIVE To determine whether SMCs control EC functions through passage of miR-143 and miR-145. METHODS AND RESULTS We used cocultures of SMCs and ECs under different conditions, as well as intact vessels to assess the transfer of miR-143 and miR-145 from one cell type to another. Imaging of cocultured cells transduced with fluorescent miRNAs suggested that miRNA transfer involves membrane protrusions known as tunneling nanotubes. Furthermore, we show that miRNA passage is modulated by the transforming growth factor (TGF) β pathway because both a specific transforming growth factor-β (TGFβ) inhibitor (SB431542) and an shRNA against TGFβRII suppressed the passage of miR-143/145 from SMCs to ECs. Moreover, miR-143 and miR-145 modulated angiogenesis by reducing the proliferation index of ECs and their capacity to form vessel-like structures when cultured on matrigel. We also identified hexokinase II (HKII) and integrin β 8 (ITGβ8)-2 genes essential for the angiogenic potential of ECs-as targets of miR-143 and miR-145, respectively. The inhibition of these genes modulated EC phenotype, similarly to miR-143 and miR-145 overexpression in ECs. These findings were confirmed by ex vivo and in vivo approaches, in which it was shown that TGFβ and vessel stress, respectively, triggered miR-143/145 transfer from SMCs to ECs. CONCLUSIONS Our results demonstrate that miR-143 and miR-145 act as communication molecules between SMCs and ECs to modulate the angiogenic and vessel stabilization properties of ECs.
Circulation-heart Failure | 2012
Alexander R. Lyon; Viacheslav O. Nikolaev; Michele Miragoli; Markus B. Sikkel; Helen Paur; Ludovic Benard; Jean-Sébastien Hulot; Erik Kohlbrenner; Roger J. Hajjar; Nicholas S. Peters; Yuri E. Korchev; Kenneth T. MacLeod; Sian E. Harding; Julia Gorelik
Background— Cardiomyocyte surface morphology and T-tubular structure are significantly disrupted in chronic heart failure, with important functional sequelae, including redistribution of sarcolemmal &bgr;2-adrenergic receptors (&bgr;2AR) and localized secondary messenger signaling. Plasticity of these changes in the reverse remodeled failing ventricle is unknown. We used AAV9.SERCA2a gene therapy to rescue failing rat hearts and measured z-groove index, T-tubule density, and compartmentalized &bgr;2AR-mediated cAMP signals, using a combined nanoscale scanning ion conductance microscopy-Förster resonance energy transfer technique. Methods and Results— Cardiomyocyte surface morphology, quantified by z-groove index and T-tubule density, was normalized in reverse-remodeled hearts after SERCA2a gene therapy. Recovery of sarcolemmal microstructure correlated with functional &bgr;2AR redistribution back into the z-groove and T-tubular network, whereas minimal cAMP responses were initiated after local &bgr;2AR stimulation of crest membrane, as observed in failing cardiomyocytes. Improvement of &bgr;2AR localization was associated with recovery of &bgr;AR-stimulated contractile responses in rescued cardiomyocytes. Retubulation was associated with reduced spatial heterogeneity of electrically stimulated calcium transients and recovery of myocardial BIN-1 and TCAP protein expression but not junctophilin-2. Conclusions— In summary, abnormalities of sarcolemmal structure in heart failure show plasticity with reappearance of z-grooves and T-tubules in reverse-remodeled hearts. Recovery of surface topology is necessary for normalization of &bgr;2AR location and signaling responses.
PLOS ONE | 2010
Siti H. Sheikh Abdul Kadir; Michele Miragoli; Shadi Abu-Hayyeh; Alexey Moshkov; Qilian Xie; Verena Keitel; Viacheslav O. Nikolaev; Catherine Williamson; Julia Gorelik
Background Intrahepatic cholestasis of pregnancy (ICP) is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC), which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM). Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart. Methods and Results Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters. Conclusion We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.
Cell Death and Disease | 2013
E Di Pasquale; Francesco Lodola; Michele Miragoli; Marco Denegri; José Everardo Avelino-Cruz; M Buonocore; Hiroko Nakahama; P Portararo; Raffaella Bloise; Carlo Napolitano; Gianluigi Condorelli; Priori Sg
Induced pluripotent stem cells (iPSC) offer a unique opportunity for developmental studies, disease modeling and regenerative medicine approaches in humans. The aim of our study was to create an in vitro ‘patient-specific cell-based system’ that could facilitate the screening of new therapeutic molecules for the treatment of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited form of fatal arrhythmia. Here, we report the development of a cardiac model of CPVT through the generation of iPSC from a CPVT patient carrying a heterozygous mutation in the cardiac ryanodine receptor gene (RyR2) and their subsequent differentiation into cardiomyocytes (CMs). Whole-cell patch-clamp and intracellular electrical recordings of spontaneously beating cells revealed the presence of delayed afterdepolarizations (DADs) in CPVT-CMs, both in resting conditions and after β-adrenergic stimulation, resembling the cardiac phenotype of the patients. Furthermore, treatment with KN-93 (2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), an antiarrhythmic drug that inhibits Ca2+/calmodulin-dependent serine–threonine protein kinase II (CaMKII), drastically reduced the presence of DADs in CVPT-CMs, rescuing the arrhythmic phenotype induced by catecholaminergic stress. In addition, intracellular calcium transient measurements on 3D beating clusters by fast resolution optical mapping showed that CPVT clusters developed multiple calcium transients, whereas in the wild-type clusters, only single initiations were detected. Such instability is aggravated in the presence of isoproterenol and is attenuated by KN-93. As seen in our RyR2 knock-in CPVT mice, the antiarrhythmic effect of KN-93 is confirmed in these human iPSC-derived cardiac cells, supporting the role of this in vitro system for drug screening and optimization of clinical treatment strategies.
Hepatology | 2011
Michele Miragoli; Siti H. Sheikh Abdul Kadir; Mary N. Sheppard; Nicolò Salvarani; Matilda Virta; Sarah Wells; Max J. Lab; Viacheslav O. Nikolaev; Alexey Moshkov; William M. Hague; Stephan Rohr; Catherine Williamson; Julia Gorelik
Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re‐entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. Conclusion: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above‐described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB. (HEPATOLOGY 2011;)
Journal of the Royal Society Interface | 2011
Michele Miragoli; Alexey Moshkov; Pavel Novak; Andrew I. Shevchuk; Viacheslav O. Nikolaev; Ismail El-Hamamsy; Claire M.F. Potter; Peter F Wright; S.H. Sheikh Abdul Kadir; Alexander R. Lyon; Jane A. Mitchell; Adrian H. Chester; David Klenerman; Max J. Lab; Yuri E. Korchev; Sian E. Harding; Julia Gorelik
Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies.
Nano Letters | 2014
Pavel Novak; Andrew I. Shevchuk; Pakatip Ruenraroengsak; Michele Miragoli; Andrew J. Thorley; David Klenerman; Max J. Lab; Teresa D. Tetley; Julia Gorelik; Yuri E. Korchev
Experimental data on dynamic interactions between individual nanoparticles and membrane processes at nanoscale, essential for biomedical applications of nanoparticles, remain scarce due to limitations of imaging techniques. We were able to follow single 200 nm carboxyl-modified particles interacting with identified membrane structures at the rate of 15 s/frame using a scanning ion conductance microscope modified for simultaneous high-speed topographical and fluorescence imaging. The imaging approach demonstrated here opens a new window into the complexity of nanoparticle-cell interactions.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Stefano Rossi; Silvana Baruffi; Andrea Bertuzzi; Michele Miragoli; Domenico Corradi; Roberta Maestri; Rossella Alinovi; Antonio Mutti; Ezio Musso; Andrea Sgoifo; Donatella Brisinda; Riccardo Fenici; Emilio Macchi
Ventricular arrhythmias are frequently observed in the elderly population secondary to alterations of electrophysiological properties that occur with the normal aging process of the heart. However, the underlying mechanisms remain poorly understood. The aim of the present study was to determine specific age-related changes in electrophysiological properties and myocardial structure in the ventricles that can be related to a structural-functional arrhythmogenic substrate. Multiple unipolar electrograms were recorded in vivo on the anterior ventricular surface of four control and seven aged rats during normal sinus rhythm and ventricular pacing. Electrical data were related to morphometric and immunohistochemical parameters of the underlying ventricular myocardium. In aged hearts total ventricular activation time was significantly delayed (QRS duration: +69%), while ventricular conduction velocity did not change significantly compared with control hearts. Moreover, ventricular activation patterns displayed variable numbers of epicardial breakthrough points whose appearance could change with time. Morphological analysis in aged rats revealed that heart weight and myocyte transverse diameter increased significantly, scattered microfoci of interstitial fibrosis were mostly present in the ventricular subendocardium, and gap junction connexin expression decreased significantly in ventricular myocardium compared with control rats. Our results show that in aged hearts delayed total ventricular activation time and abnormal activation patterns are not due to delayed myocardial conduction and suggest the occurrence of impaired impulse propagation through the conduction system leading to uncoordinated myocardial excitation. Impaired interaction between the conduction system and ventricular myocardium might create a potential reentry substrate, contributing to a higher incidence of ventricular arrhythmias in the elderly population.
Nanomedicine: Nanotechnology, Biology and Medicine | 2016
Vittoria Di Mauro; Michele Iafisco; Nicolò Salvarani; Marco Vacchiano; Pierluigi Carullo; Gloria Belén Ramírez-Rodríguez; Tatiana Patrício; Anna Tampieri; Michele Miragoli; Daniele Catalucci
AIM To develop biocompatible and bioresorbable negatively charged calcium phosphate nanoparticles (CaP-NPs) as an innovative therapeutic system for the delivery of bioactive molecules to the heart. MATERIALS & METHODS CaP-NPs were synthesized via a straightforward one-pot biomineralization-inspired protocol employing citrate as a stabilizing agent and regulator of crystal growth. CaP-NPs were administered to cardiac cells in vitro and effects of treatments were assessed. CaP-NPs were administered in vivo and delivery of microRNAs was evaluated. RESULTS CaP-NPs efficiently internalized into cardiomyocytes without promoting toxicity or interfering with any functional properties. CaP-NPs successfully encapsulated synthetic microRNAs, which were efficiently delivered into cardiac cells in vitro and in vivo. CONCLUSION CaP-NPs are a safe and efficient drug-delivery system for potential therapeutic treatments of polarized cells such as cardiomyocytes.