Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Puglia is active.

Publication


Featured researches published by Michele Puglia.


Journal of Proteomics | 2009

Solubilization methods and reference 2-DE map of cow milk fat globules

Laura Bianchi; Michele Puglia; Claudia Landi; Silvia Matteoni; Daniele Perini; Alessandro Armini; Margherita Verani; Claudia Maria Trombetta; Patrizia Soldani; Paola Roncada; Gianfranco Greppi; Vitaliano Pallini; Luca Bini

Milk fat globules (MFGs) are secretory vesicles assembled and secreted by mammary epithelial cells during lactation. They consist of fat globules surrounded by a lipid bilayer membrane which is derived from the apical membrane of the lactating cells. MFGs contain, besides lipids, proteins from the apical plasma membrane and from the cytoplasmatic material. Their peculiar vesicle nature makes them a suitable and easily available source of biological material in monitoring the physiopathological state of the mammary gland. Unfortunately, the conspicuous lipidic component of MFGs consistently limits protein extraction and purification for MFG proteomic investigations. This work deals with the development of a suitable procedure for protein extraction from the cow MFGs in order to qualitatively and quantitatively improve 2-D electropherograms of the MFG. MFGs were purified from raw milk by centrifugation and then delipidated/precipitated. The resulting protein pellets were solubilised using four different 2-D SDS PAGE compatible lysis buffers. Applied methodological procedures for protein extraction and evaluation of the resulting 2-D protein-pattern are presented and discussed. Using these procedures a reference 2-D map of cow milk fat globules is also reported. The majority of the obtained identifications was represented by proteins involved in lipid synthesis or in fat globule secretion.


Journal of Biological Inorganic Chemistry | 2010

Exploring the biochemical mechanisms of cytotoxic gold compounds: a proteomic study

Francesca Magherini; Alessandra Modesti; Luca Bini; Michele Puglia; Ida Landini; Stefania Nobili; Enrico Mini; Maria Agostina Cinellu; Chiara Gabbiani; Luigi Messori

We have recently shown that a group of structurally diverse gold compounds are highly cytotoxic toward a panel of 36 human tumor cell lines through a variety of biochemical mechanisms. A classic proteomic approach is exploited here to gain deeper insight into those mechanisms. This investigation is focused on Auoxo6, a novel binuclear gold(III) complex, and auranofin, a clinically established gold(I) antiarthritic drug. First, the 72-h cytotoxicity profiles of Auoxo6 and auranofin were determined against A2780 human ovarian carcinoma cells. Subsequently, protein extraction from gold-treated A2780 cells sensitive to cisplatin and 2D gel electrophoresis separation were carried out according to established procedures. Notably, both metallodrugs caused relatively modest changes in protein expression in comparison with controls as only 11 out of approximately 1,300 monitored spots showed appreciable quantitative changes. Very remarkably, six altered proteins were in common between the two treatments. Eight altered proteins were identified by mass spectrometry; among them was ezrin, a protein associated with the cytoskeleton and involved in apoptosis. Interestingly, two altered proteins, i.e., peroxiredoxins 1 and 6, are known to play crucial roles in the cell redox metabolism. Increased cleavage of heterogeneous ribonucleoprotein H was also evidenced, consistent with caspase 3 activation. Overall, the results of the present proteomic study point out that the mode of action of Auoxo6 is strictly related to that of auranofin, that the induced changes in protein expression are limited and selective, that both gold compounds trigger caspase 3 activation and apoptosis, and that a few affected proteins are primarily involved in cell redox homeostasis.


Journal of Proteomics | 2012

Proteomic analysis and protein carbonylation profile in trained and untrained rat muscles

Francesca Magherini; Provvidenza Maria Abruzzo; Michele Puglia; Luca Bini; Tania Gamberi; Fabio Esposito; Arsenio Veicsteinas; Marina Marini; Claudia Fiorillo; Massimo Gulisano; Alessandra Modesti

Understanding the relationship between physical exercise, reactive oxygen species and skeletal muscle modification is important in order to better identify the benefits or the damages that appropriate or inappropriate exercise can induce. Unbalanced ROS levels can lead to oxidation of cellular macromolecules and a major class of protein oxidative modification is carbonylation. The aim of this investigation was to study muscle protein expression and carbonylation patterns in trained and untrained animal models. We analyzed two muscles characterized by different metabolisms: tibialis anterior and soleus. Whilst tibialis anterior is mostly composed of fast-twitch fibers, the soleus muscle is mostly composed of slow-twitch fibers. By a proteomic approach we identified 15 protein spots whose expression is influenced by training. Among them in tibialis anterior we observed a down-regulation of several glycolitic enzymes. Concerning carbonylation, we observed the existence of a high basal level of protein carbonylation. Although this level shows some variation among individual animals, several proteins (mostly involved in energy metabolism, muscle contraction, and stress response) appear carbonylated in all animals and in both types of skeletal muscle. Moreover we identified 13 spots whose carbonylation increases after training.


Metallomics | 2012

Proteomic analysis of ovarian cancer cell responses to cytotoxic gold compounds

Francesca Guidi; Ida Landini; Michele Puglia; Francesca Magherini; Chiara Gabbiani; Maria Agostina Cinellu; Stefania Nobili; Tania Fiaschi; Luca Bini; Enrico Mini; Luigi Messori; Alessandra Modesti

Platinum-based chemotherapy is the primary treatment for human ovarian cancer. Overcoming platinum resistance has become a critical issue in the current chemotherapeutic strategies of ovarian cancer as drug resistance is the main reason for treatment failure. Cytotoxic gold compounds hold great promise to reach this goal; however, their modes of action are still largely unknown. To shed light on the underlying molecular mechanisms, we performed 2-DE and MS analysis to identify differential protein expression in a cisplatin-resistant human ovarian cancer cell line (A2780/R) following treatment with two representative gold compounds, namely Auranofin and Auoxo6. It is shown that Auranofin mainly acts by altering the expression of Proteasome proteins while Auoxo6 mostly modifies proteins related to mRNA splicing, trafficking and stability. We also found that Thioredoxin-like protein 1 expression is greatly reduced after treatment with both gold compounds. These results are highly indicative of the likely sites of action of the two tested gold drugs and of the affected cellular functions. The implications of the obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold agents.


Molecular BioSystems | 2011

A proteomic approach to identify plasma proteins in patients with abdominal aortic aneurysm.

Tania Gamberi; Michele Puglia; Francesca Guidi; Francesca Magherini; Luca Bini; Riccardo Marzocchini; Alessandra Modesti; Pietro Amedeo Modesti

Our aim was to identify the key proteins involved in the pathogenesis of AAAs. To explore the possible pathogenetic mechanisms involved in AAA, we analyzed by proteomics modifications in plasma proteome of patients with AAA. Therefore, the present study analyzed the soluble plasma proteins using two dimensional electrophoresis (2-DE) and mass spectrometry (MS). We identified 33 protein spots, 31 of which show an up-regulation in AAA patients whilst the expression level of 2 protein spots is reduced. We confirm a number of biomarkers associated with AAA that have been previously identified by various authors. We identified a significant increase of a class of proteins such as fibrinogen, α1-antitrypsin and haptoglobin in plasma from AAA patients. The presence of these proteins in human AAA plasma may be related to the inflammatory processes active in these subjects. We have seen a negative correlation between the vitamin D-binding protein (DBP) and hemoglobin subunit β and AAA presence. DBP levels have been found to increase in AAA wall tissues by others and this discrepancy with our results could be due to the different analysis source. We wanted to analyze the factors measurable in plasma-associated rather than in tissue-associated markers because the application of circulating biomarkers in diagnostic laboratories would be relatively simple. DBP is very important for vascular remodelling and it may have an important role in the protection of vascular walls. In plasma tissue this protein reduces platelet aggregation and extends coagulation time. No one protein identified in this study has the biologic plausibility to be used singularly as a biomarker of aneurysmal disease due to inadequate specificity. The effect of using multiple biomarkers combined with clinical factors requires investigation in carefully designed population-based studies and these studies need to select the criteria of choice to define healthy controls very carefully. Clearer identification of various markers is needed, possibly using other proteomic techniques to screen for new candidates such as gel-free proteomic technology that enables us to handle larger groups of subject compared to gel-based proteomic technology.


Free Radical Biology and Medicine | 2015

Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity.

Jeremy W. Deuel; Florence Vallelian; Christian A. Schaer; Michele Puglia; Paul W. Buehler; Dominik J. Schaer

Free hemoglobin (Hb) triggered vascular damage occurs in many hemolytic diseases, such as sickle cell disease, with an unmet need for specific therapeutic interventions. Based on clinical observations the Hb and heme scavenger proteins haptoglobin (Hp) and hemopexin (Hx) have been characterized as a sequential defense system with Hp as the primary protector and Hx as a backup when all Hp is depleted during more severe intravascular hemolysis. In this study we present a mechanistic rationale for this paradigm based on a combined biochemical and cell biological approach directed at understanding the unique roles of Hp and Hx in Hb detoxification. Using a novel in vitro model of Hb triggered endothelial damage, which recapitulates the well-characterized pathophysiologic sequence of oxyHb(Fe(2+)) transformation to ferric Hb(Fe(3+)), free heme transfer from ferric Hb(Fe(3+)) to lipoprotein and subsequent oxidative reactions in the lipophilic phase. The accumulation of toxic lipid peroxidation products liberated during oxidation reactions ultimately lead to endothelial damage characterized by a specific gene expression pattern with reduced cellular ATP and monolayer disintegration. Quantitative analysis of key chemical and biological parameters allowed us to precisely define the mechanisms and concentrations required for Hp and Hx to prevent this toxicity. In the case of Hp we defined an exponential relationship between Hp availability relative to oxyHb(Fe(2+)) and related protective activity. This exponential relationship demonstrates that large Hp quantities are required to prevent Hb toxicity. In contrast, the linear relationship between Hx concentration and protection defines a highly efficient backup scavenger system during conditions of large excess of free oxyHb(Fe(2+)) that occurs when all Hp is consumed. The diverse protective function of Hp and Hx in this model can be explained by the different target specificities of the two proteins.


Environmental Pollution | 2012

The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery.

Valentina Nicolardi; Giampiero Cai; Luigi Parrotta; Michele Puglia; Laura Bianchi; Luca Bini; Carlo Gaggi

Lichens are an excellent model to study the bioaccumulation of heavy metals but limited information is available on the molecular mechanisms occurring during bioaccumulation. We investigated the changes of the lichen proteome during exposure to constant concentrations of mercury. We found that most of changes involves proteins of the photosynthetic pathway, such as the chloroplastic photosystem I reaction center subunit II, the oxygen-evolving protein and the chloroplastic ATP synthase β-subunit. This suggests that photosynthesis is a target of the toxic effects of mercury. These findings are also supported by changes in the content of photosynthetic pigments (chlorophyll a and b, and β-carotene). Alterations to the photosynthetic machinery also reflect on the structure of thylakoid membranes of algal cells. Response of lichens to mercury also involves stress-related proteins (such as Hsp70) but not cytoskeletal proteins. Results suggest that lichens adapt to mercury exposure by changing the metabolic production of energy.


Journal of Proteome Research | 2012

Proteomic profile identifies dysregulated pathways in Cornelia de Lange syndrome cells with distinct mutations in SMC1A and SMC3 genes.

Anna Gimigliano; Linda Mannini; Laura Bianchi; Michele Puglia; Matthew A. Deardorff; Stefania Menga; Ian D. Krantz; Antonio Musio; Luca Bini

Mutations in cohesin genes have been identified in Cornelia de Lange syndrome (CdLS), but its etiopathogenetic mechanisms are still poorly understood. To define biochemical pathways that are affected in CdLS, we analyzed the proteomic profile of CdLS cell lines carrying mutations in the core cohesin genes, SMC1A and SMC3. Dysregulated protein expression was found in CdLS probands compared to controls. The proteomics analysis was able to discriminate between probands harboring mutations in the different domains of the SMC proteins. In particular, proteins involved in the response to oxidative stress were specifically down-regulated in hinge mutated probands. In addition, the finding that CdLS cell lines show an increase in global oxidative stress argues that it could contribute to some CdLS phenotypic features such as premature physiological aging and genome instability. Finally, the c-MYC gene represents a convergent hub lying at the center of dysregulated pathways, and is down-regulated in CdLS. This study allowed us to highlight, for the first time, specific biochemical pathways that are affected in CdLS, providing plausible causal evidence for some of the phenotypic features seen in CdLS.


Annals of Botany | 2011

Xylan-degrading enzymes in male and female flower nectar of Cucurbita pepo

Massimo Nepi; Luca Bini; Laura Bianchi; Michele Puglia; M Abate; Giampiero Cai

BACKGROUND AND AIMS Nectar is a very complex mixture of substances. Some components (sugars and amino acids) are considered primary alimentary rewards for animals and have been investigated and characterized in numerous species for many years. In contrast, nectar proteins have been the subject of few studies and little is known of their function. Only very recently have detailed studies and characterization of nectar proteins been undertaken, and then for only a very few species. This current work represents a first step in the identification of a protein profile for the floral nectar of Cucurbita pepo. In this regard, the species studied is of particular interest in that it is monoecious with unisexual flowers and, consequently, it is possible that nectar proteins derived from male and female flowers may differ. METHODS Manually excised spots from two-dimensional (2-D) electrophoresis were subjected to in-gel protein digestion. The resulting peptides were sequenced using nanoscale LC-ESI/MS-MS (liquid chromatography-electrospray ionization/tandem mass spectrometry). An MS/MS ions search was carried out in Swiss-Prot and NCBInr databases using MASCOT software. KEY RESULTS Two-dimensional electrophoresis revealed a total of 24 spots and a different protein profile for male and female flower nectar. Four main proteins recognized by 2-D electrophoresis most closely resemble β-d-xylosidases from Arabidopsis thaliana and have some homology to a β-d-xylosidase from Medicago varia. They were present in similar quantities in male and female flowers and had the same molecular weight, but with slightly different isoelectric points. CONCLUSIONS A putative function for xylosidases in floral nectar of C. pepo is proposed, namely that they may be involved in degrading the oligosaccharides released by the nectary cell walls in response to hydrolytic enzymes produced by invading micro-organisms. Several types of oligosaccharides have been reported to increase the pathogenic potential of micro-organisms. Thus, it is possible that such a mechanism may reduce the virulence of pathogens present in nectar.


Proteomics | 2011

Proteomic analysis identifies differentially expressed proteins after HDAC vorinostat and EGFR inhibitor gefitinib treatments in Hep-2 cancer cells.

Laura Bianchi; Francesca Bruzzese; Alessandra Leone; Assunta Gagliardi; Michele Puglia; Elena Di Gennaro; Monia Rocco; Anna Gimigliano; Biagio Pucci; Alessandro Armini; Luca Bini; Alfredo Budillon

Several solid tumors are characterized by poor prognosis and few effective treatment options, other than palliative chemotherapy in the recurrent/metastatic setting. Epidermal growth factor receptor (EGFR) has been considered an important anticancer target because it is involved in the development and progression of several solid tumors; however, only a subset of patients show a clinically meaningful response to EGFR inhibition, particularly to EGFR tyrosine kinase inhibitors such as gefitinib. We have recently demonstrated synergistic antitumor effect of the histone deacetylase inhibitor vorinostat combined with gefitinib. To further characterize the interaction between these two agents, cellular extracts from Hep‐2 cancer cells that were untreated or treated for 24 h with either vorinostat or gefitinib alone or with a vorinostat/gefitinib combination were analyzed using 2‐D DIGE. Software analysis using DeCyder was performed, and numerous differentially expressed protein spots were visualized between the four examined settings. Using MALDI‐TOF MS and ESI‐Ion trap MS/MS, several differentially expressed proteins were identified; some of these were validated by Western blotting. Finally, a pathway analysis of experimental data performed using MetaCore highlighted a relevant relationship between the identified proteins and additional potential effectors. In conclusion, we performed a comprehensive analysis of proteins regulated by vorinostat and gefitinib, alone and in combination, providing a useful insight into their mechanisms of action as well as their synergistic interaction.

Collaboration


Dive into the Michele Puglia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge