Michele Rechia Fighera
Universidade Federal de Santa Maria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michele Rechia Fighera.
Epilepsy Research | 2008
Mauro Schneider Oliveira; Ana Flávia Furian; Luiz Fernando Freire Royes; Michele Rechia Fighera; Natália Gindri Fiorenza; Marcelo Castelli; Pablo Machado; Denise Bohrer; Marlei Veiga; Juliano Ferreira; Esper Abraão Cavalheiro; Carlos Fernando Mello
Cyclooxygenases (COXs) are rate-limiting enzymes in the metabolic pathways in which arachidonic acid is converted to prostaglandins. COX-2 is the isoform induced at injury/inflammation sites and expressed constitutively in a few tissues, such as the central nervous system, and plays a role in neurodegenerative diseases associated with increased excitatory activity. However, the role of COX-2 and its main product, prostaglandin E(2) (PGE(2)), in the convulsive states is not fully established. In this study we showed that the selective COX-2 inhibitor, celecoxib (at the dose of 2mg/kg, but not at the doses of 0.2 or 20mg/kg, p.o.), protects against the seizures induced by pentylenetetrazol (PTZ, 60 mg/kg, i.p.). The role of PGE(2) in the convulsions induced by PTZ was further investigated by administering anti-PGE(2) antibodies (4 microg/2 microl, i.c.v.), and assessing electroencephalographic changes induced by PTZ (PTZ, 60 mg/kg, i.p.). Anti-PGE(2) antibodies attenuated PTZ-induced seizures in rats. In addition, combining PGE(2) (100 ng/2 microl, i.c.v.) with a subconvulsant dose of PTZ (20mg/kg, i.p.) caused seizures, further supporting a role for this prostaglandin in the convulsions induced by PTZ. Finally, we showed that the anticonvulsant action of celecoxib (2mg/kg, p.o.) was reversed by the intracerebroventricular administration of PGE(2) (10 ng/2 microl, i.c.v.). These data constitute strong converging pharmacological evidence supporting a facilitatory role for the COX-2/PGE(2) pathway in the seizures induced by PTZ. However, whether selective COX-2 inhibitors are safer anti-inflammatory drugs for epileptic patients than nonspecific inhibitors remains to be determined.
Neuroscience | 2003
Luiz Fernando Freire Royes; Michele Rechia Fighera; Ana Flávia Furian; M Schneider Oliveira; L.G Martins da Silva; Carlos Ricardo Maneck Malfatti; Paulo H. Schneider; Antonio L. Braga; Moacir Wajner; Carlos Fernando Mello
Methylmalonic acidemias are metabolic disorders caused by a severe deficiency of methylmalonyl-CoA mutase activity, which are characterized by neurological dysfunction, including convulsions. It has been reported that the accumulating metabolite, L-methylmalonic acid (MMA), inhibits succinate dehydrogenase leading to ATP depletion in vitro, and that the intrastriatal injection of MMA induces convulsions through secondary NMDA receptor stimulation. In this study we investigated the effect of creatine (1.2, 3.6 and 12.0 mg/kg, (i.p.), [DOSAGE ERROR CORRECTED] succinate (1.5 micromol/striatum) and MK-801 (3 nmol/striatum) on the convulsions and on the striatal lactate increase induced by MMA (4.5 micromol/striatum) in rats. The effect of creatine on the striatal phosphocreatine content and on MMA-induced phosphocreatine depletion was also evaluated. Creatine, succinate and MK-801 pretreatment decreased the number and duration of convulsive episodes and the lactate increase elicited by MMA. Creatine, but not succinate, prevented the convulsions and the lactate increase induced by the direct stimulation of NMDA receptors. Acute creatine administration increased the total striatal phosphocreatine content and prevented MMA-induced phosphocreatine depletion. Our results suggest that MMA increases lactate production through secondary NMDA receptor activation, and it is proposed that the anticonvulsant effect of creatine against MMA-induced convulsions may be due to an increase in the phosphocreatine content available for metabolic purposes.
Behavioural Brain Research | 2008
Frederico Diniz Lima; Mauren Assis Souza; Ana Flávia Furian; Leonardo Magno Rambo; Leandro Rodrigo Ribeiro; Felipe Villa Martignoni; Maurício Scopel Hoffmann; Michele Rechia Fighera; Luiz Fernando Freire Royes; Mauro Schneider Oliveira; Carlos Fernando Mello
Traumatic brain injury (TBI) is a devastating disease that commonly causes persistent mental disturbances and cognitive deficits. Although studies indicate that oxidative stress and functional deficits occurring after TBI are interrelated events, the knowledge of the mechanisms underlying the development of such cognitive deficits has been limited. Thus, in the present study, we investigated the effect of fluid percussion brain injury (FPI) on a spatial learning task and levels of oxidative stress markers, namely, protein carbonylation and thiobarbituric acid-reactive substances (TBARS) and Na+,K+-ATPase activity 1 or 3 months after FPI in rats. Statistical analysis revealed that FPI increased the scape latency and mean number of error in Barnes maze test 1 and 3 months after FPI. We also found that protein carbonylation and TBARS content increased in the parietal cortex 1 and 3 months after FPI. In addition, 3 months after FPI, protein carbonylation levels increased both in ipsilateral and contralateral cortices of FPI animals. Indeed, statistical analysis revealed a decrease in Na+,K+-ATPase activity in the cerebral cortex of 1 month FPI animals. Furthermore, the decrease in enzyme activity found 3 months was larger, when compared with 1 month after FPI. These results suggest that cognitive impairment following TBI may result, at least in part, from increase of two oxidative stress markers, protein carbonylation and TBARS that occurs concomitantly to a decrease in Na+,K+-ATPase activity.
Epilepsia | 2009
Mauren Assis Souza; Mauro Schneider Oliveira; Ana Flávia Furian; Leonardo Magno Rambo; Leandro Rodrigo Ribeiro; Frederico Diniz Lima; Liriana Correa Dalla Corte; Luiz Fernando Almeida Silva; Leandro Thies Retamoso; Cristiane Lenz Dalla Corte; Gustavo Orione Puntel; Daiana Silva de Ávila; Félix Alexandre Antunes Soares; Michele Rechia Fighera; Carlos Fernando Mello; Luiz Fernando Freire Royes
Purpose: In the present study we decided to investigate whether physical exercise protects against the electrographic, oxidative, and neurochemical alterations induced by subthreshold to severe convulsive doses of pentyltetrazole (PTZ).
The International Journal of Biochemistry & Cell Biology | 2003
Michele Rechia Fighera; Juliana Sartori Bonini; Telma Grendene de Oliveira; Roberto Frussa-Filho; João Batista Teixeira da Rocha; Carlos Severo Dutra-Filho; Maribel Antonello Rubin; Carlos Fernando Mello
The effects of the administration of monosialoganglioside (GM1) on methylmalonic acid (MMA)-induced convulsions, production of thiobarbituric acid reactive substances (TBARS) and on the striatal content of ascorbic acid and total non-protein thiol (SH) groups were evaluated in adult male rats. Animals received two intraperitoneal injections of GM1 (50 mg/kg) or saline (0.85% NaCl) spaced 24h apart. Thirty minutes after the second GM1 or saline injection, L-MMA (6 micromol) or NaCl (9 micromol) was injected into the right striatum and the animals were observed for the appearance of convulsions for 15 min. The animals were sacrificed and their striatal content of ascorbic acid, SH groups and TBARS was measured. The effect of GM1 on MMA-induced TBARS production in striatal homogenates was also evaluated in vitro.MMA injection caused convulsions (Sal-MMA: 9.8+/-1.4 episodes, which lasted 271+/-48 s) and increased the striatal content of TBARS (Sal-MMA: 149.0+/-11.5 nmol MDA/g tissue), but did not alter total striatal SH or ascorbic acid contents. GM1 pretreatment decreased MMA-induced convulsions (GM1-MMA: 6.3+/-2.0 episodes, which lasted 115.1+/-42.2s) and TBARS increase (GM1-MMA: 102.4+/-19.5 nmol MDA/g tissue). GM1 pretreatment increased ascorbic acid content of the striata (saline-pretreated: 1514+/-75.9; GM1-pretreated: 1878.6+/-102.8 microg ascorbic acid/mg tissue). MMA increased TBARS production in vitro, and GM1 had no effect on such MMA-induced effect. This study provides evidence that GM1 increases striatal ascorbic acid content and decreases MMA-induced neurotoxicity assessed by behavioral and neurochemical parameters.
Brain Research | 2009
Frederico Diniz Lima; Mauro Schneider Oliveira; Ana Flávia Furian; Mauren Assis Souza; Leonardo Magno Rambo; Leandro Rodrigo Ribeiro; Luiz Fernando Almeida Silva; Leandro Thies Retamoso; Maurício Scopel Hoffmann; Danieli Valnes Magni; Letícia Meier Pereira; Michele Rechia Fighera; Carlos Fernando Mello; Luiz Fernando Freire Royes
Physical exercise is likely to alter brain function and to afford neuroprotection in several neurological diseases. Although the favorable effects of physical exercise on traumatic brain injury (TBI) patients is well known, little information is available regarding the role of free radicals in the improvement induced by physical exercise in an experimental model of TBI induced by fluid percussion injury (FPI). Thus, we investigated whether 6 weeks of swimming training protects against oxidative damage (measured by protein carbonylation and thiobarbituric acid-reactive substances-TBARS) and neurochemical alterations represented by immunodetection of alpha subunit and activity of Na(+),K(+)-ATPase after FPI in cerebral cortex of rats. Statistical analysis revealed that physical training protected against FPI-induced TBARS and protein carbonylation increase. In addition, physical training was effective against Na(+),K(+)-ATPase enzyme activity inhibition and alpha(1) subunit level decrease after FPI. Pearsons correlation analysis revealed that the decrease in levels of catalytic alpha(1) subunit of Na(+),K(+)-ATPase induced FPI correlated with TBARS and protein carbonylation content increase. Furthermore, the effective protection exerted by physical training against FPI-induced free radical correlated with the immunocontent of the catalytic alpha(1) subunit maintenance. These data suggest that TBI-induced reactive oxygen species (ROS) generation decreases Na(+),K(+)-ATPase activity by decreasing the total number of enzyme molecules, and that physical exercise protects against this effect. Therefore, the effective protection of selected targets, such as Na(+),K(+)-ATPase induced by physical training, supports the idea that physical training may exert prophylactic effects on neuronal cell dysfunction and damage associated with TBI.
Brain Research | 2001
Carlos Fernando Mello; Stefan Kölker; Barbara Ahlemeyer; Fabiane R Souza; Michele Rechia Fighera; Ertan Mayatepek; Josef Krieglstein; Georg F. Hoffmann; Moacir Wajner
Glutaryl-CoA dehydrogenase deficiency is an inherited neurometabolic disease complicated by precipitation of acute encephalopathic crises during a vulnerable period of brain development. These crises result in bilateral striatal damage and subsequently a dystonic dyskinetic movement disorder. In previous in vitro studies neuronal damage in this disease has been linked to an excitotoxic mechanism mediated in particular by one of the accumulating metabolites, 3-hydroxyglutaric acid. However, nothing is known about the in vivo effects of this organic acid. In the present study, we used a stereotaxic intrastriatal injection technique to investigate the behavioral and neurotoxic effects of 3-hydroxyglutaric acid exposure in rats. Here, we report that 3-hydroxyglutaric acid induced an increase in convulsion frequency and duration as determined by open field measurement. Nissl-stained coronal sections from treated rats revealed a pale lesion in the striatum following 3-hydroxyglutaric acid exposure. N-methyl-D-aspartate (NMDA) receptor blockade by MK-801 and stimulation of GABA(A) receptors by muscimol prevented the induction of convulsions and striatal damage by 3-hydroxyglutaric acid, whereas blockade of non-NMDA receptors by 6,7-dinitroquinoxaline-2,3-dione (DNQX) was not protective. We conclude that 3-hydroxyglutaric acid induces convulsions and striatal damage via initiation of an imbalance in the excitatory glutamatergic and the inhibitory GABAergic neurotransmission, resulting in an enhanced excitatory input in striatal neurons. These results support the hypothesis of NMDA receptor-mediated excitotoxic cell damage in glutaryl-CoA dehydrogenase deficiency and represent the basis for the development of new neuroprotective treatment strategies.
Neurochemistry International | 2007
Ana Flávia Furian; Michele Rechia Fighera; Mauro Schneider Oliveira; Ana Paula de Oliveira Ferreira; Natália Gindri Fiorenza; Jociane de Carvalho Myskiw; João Carlos Petry; Rafael Correa Coelho; Carlos Fernando Mello; Luiz Fernando Freire Royes
Methylene blue (MB) is a thiazine dye with cationic and lipophilic properties that acts as an electron transfer mediator in the mitochondria. Due to this metabolic improving activity and free radicals scavenging effects, MB has been used in the treatment of methemoglobinemia and ifosfamide-induced encephalopathy. Considering that methylmalonic acidemia consists of a group of inherited metabolic disorders biochemically characterized by impaired mitochondrial oxidative metabolism and reactive species production, we decided to investigate whether MB, protects against the behavioral and neurochemical alterations elicited by the intrastriatal injection of methylmalonate (MMA). In the present study we showed that intrastriatal injection of MB (0.015-1.5nmol/0.5microl) protected against seizures (evidenced by electrographic recording), protein carbonylation and Na(+),K(+)-ATPase inhibition ex vivo induced by MMA (4.5micromol/1.5microl). Furthermore, we investigated whether convulsions elicited by intrastriatal MMA administration are accompanied by striatal protein carbonyl content increase and changes in Na(+),K(+)-ATPase activity in rat striatum. The effect of MB (0.015-1.5nmol/0.5microl) and MMA (4.5micromol/0.5microl) on striatal NO(x) (NO(2) plus NO(3)) content was also evaluated. Statistical analysis revealed that the MMA-induced NO(x) content increase was attenuated by intrastriatal injection of MB and the duration of convulsive episodes correlated with Na(+),K(+)-ATPase inhibition, but not with MMA-induced total protein carbonylation. In view of that MB decreases MMA-induced neurotoxicity assessed by behavioral and neurochemical parameters, the authors suggest that MB may be of value to attenuate neurological deficits of methylmalonic acidemic patients.
Neuroscience Letters | 2006
Flávia Karine Rigo; Liana Pasquetti; Carlos Ricardo Maneck Malfatti; Michele Rechia Fighera; Rafael Correa Coelho; Cristiane Zanardo Petri; Carlos Fernando Mello
Propionic acid (PA) accumulates in patients with propionic acidemia, an inherited metabolic disorder caused by the deficiency of propionyl-CoA carboxylase activity that is clinically characterized by neurological dysfunction, including seizures. However, it is not known whether PA causes seizures in experimental animals. In the current study, we investigated whether intrastriatal injection of PA (0.6-6 micromol) causes seizures and alters protein carbonyl content in the striatum of adult rats. The injection of PA caused the appearance of seizures and increased protein carbonyl content in injected and noninjected striata. PA-induced seizures and increased protein carbonylation in the striatum were prevented by the injection of MK-801 (3 nmol/0.5 microL). Our results suggest that PA causes seizures and oxidative damage by NMDA receptor-mediated mechanisms. The involvement of NMDA receptors in the pathogenesis of propionic acidemia is suggested.
Neurochemistry International | 2009
Leonardo Magno Rambo; Leandro Rodrigo Ribeiro; Mauro Schneider Oliveira; Ana Flávia Furian; Frederico Diniz Lima; Mauren Assis Souza; Luiz Fernando Almeida Silva; Leandro Thies Retamoso; Cristiane Lenz Dalla Corte; Gustavo Orione Puntel; Daiana Silva de Ávila; Félix Alexandre Antunes Soares; Michele Rechia Fighera; Carlos Fernando Mello; Luiz Fernando Freire Royes
Although physical activity and creatine supplementation have been a documented beneficial effect on neurological disorders, its implications for epilepsy are still controversial. Thus, we decided to investigate the effects of 6 weeks swimming training, creatine supplementation (300 mg/kg; p.o.) or its combination seizures and neurochemical alterations induced by pentylenetetrazol (PTZ). We found that 6 weeks of physical training or creatine supplementation decreased the duration of PTZ-induced seizures in adult male Wistar rats, as measured by cortical and hippocampal electroencephalography and behavioral analysis. Importantly, the combination between physical training and creatine supplementation had additive anticonvulsant effects, since it increased the onset latency for PTZ-induced seizures and was more effective in decrease seizure duration than physical training and creatine supplementation individually. Analysis of selected parameters of oxidative stress and antioxidant defenses in the hippocampus revealed that physical training, creatine supplementation or its combination abrogated the PTZ-elicited increase in levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonylation, as well as decrease in non-protein-thiols content, catalase (CAT) and SOD activities. In addition, this protocol of physical training and creatine supplementation prevented the PTZ-induced decrease in hippocampal Na+,K+-ATPase activity. Altogether, these results suggest that protection elicited physical training and creatine supplementation of selected targets for reactive species-mediated damage decrease of neuronal excitability and consequent oxidative damage elicited by PTZ. In conclusion, the present study shows that physical training, creatine supplementation or its combination attenuated PTZ-induced seizures and oxidative damage in vivo, and provide evidence that combination between creatine supplementation and physical exercise may be a useful strategy in the treatment of convulsive disorders.