Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Saliola is active.

Publication


Featured researches published by Michele Saliola.


Research in Microbiology | 2000

Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis

Hermann J. Heipieper; S. Isken; Michele Saliola

The effects of ethanol and 1-octanol on growth and fatty acid composition of different strains of Kluyveromyces lactis containing a mutation in the four different alcohol dehydrogenase (KlADH) genes were investigated. In the presence of ethanol and 1-octanol K. lactis reduced the fluidity of its lipids by decreasing the unsaturation index (UI) of its membrane fatty acids. In this way, a direct correlation between nonlethal ethanol concentrations and the decrease in the UI could be observed. At concentrations which totally inhibited cell growth no reaction occurred. These adaptive modifications of the fatty acid pattern of K. lactis to ethanol contrasted with those reported for Saccharomyces cerevisiae and Schizosaccharomyces pombe. Whereas these two yeasts increased the fluidity of their membrane lipids in the presence of ethanol, K. lactis reduced the fluidity (UI) of its lipids. Among the different isogenic adh negative strains tested, the strain containing no ADH (adh0) and that containing only KlADH1 were the most alcohol-sensitive. The strain with only KlADH2 showed nearly the same tolerance as reference strain CBS 2359/152 containing all four ADH genes. This suggests that the KlADH2 product could play an important role in the adaptation/detoxification reactions of K. lactis to high ethanol concentrations.


Plasmid | 1986

Analysis of a 1.6-μm circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism

Claudio Falcone; Michele Saliola; X.J. Chen; Laura Frontali; Hiroshi Fukuhara

A new plasmid has been found in the yeast Kluyveromyces drosophilarum. It is a double-stranded circular DNA, 1.6 micron in length (4.8 kilobase pairs). As in the case of Saccharomyces 2 mu circles, this plasmid occurs in two isomeric forms corresponding to the inversion of a segment between two 346-bp-long inverted repeats within the molecule. Each form has been separately cloned into bacterial plasmids. The new yeast plasmid, called pKD1, contains sequences that allow its replication in Saccharomyces cerevisiae.


Molecular Microbiology | 1992

Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis

Cristina Mazzoni; Michele Saliola; Claudio Falcone

The alcohol dehydrogenase (ADH) system in the yeast Kluyveromyces lactis is encoded by four ADH genes. In this paper we report evidence that at least three of these genes are transcribed and transcribed into protein. KIADH1 and KIADH2, which encode cytoplasmic activities, are preferentially expressed in glucose‐grown cells with respect to ethanol‐grown cells. KIADH4, which encodes one of the two activities localized within mitochondria, is induced at the transcriptional level in the presence of ethanol as is the ADH2 gene in Saccharomyces cerevlslae. However the regulation of the expression of the K. lactis gene is completely different from that of ADH2 and of other known ADH genes in that KIADH4 is insensitive to glucose repression and is not expressed on non‐fermentabie carbon sources other than ethanol. This km6 of regulation can be clearly observed in non‐fermenting strains, where the induction of KIADH4 is dependent on the addition of ethanol to the medium. On the contrary, in fermenting strains KIADH4 is always induced by ethanol or acetaldehyde produced endocellularly and this results in constitutive expression of the gene aiso in the presence of glucose. The mitochondrial localization of the activity encoded by KIADH4 and the peculiar regulation of this gene could be related to the fact that K. lactis is a petite negative yeast in which some mitochondrial functions seem to be essential for cell viability.


Molecular Genetics and Genomics | 1995

Two mitochondrial alcohol dehydrogenase activities of Kluyveromyces lactis are differently expressed during respiration and fermentation

Michele Saliola; Claudio Falcone

The lactose-utilizing yeast Kluyveromyces lactis is an essentially aerobic organism in which both respiration and fermentation can coexist depending on the sugar concentration. Despite a low fermentative capacity as compared to Saccharomyces cerevisiae, four structural genes encoding alcohol dehydrogenase (ADH) activities are present in this yeast. Two of these activities, namely KlADH III and KlADH IV, are located within mitochondria and their presence is dependent on the carbon sources in the medium. In this paper we demonstrate by transcription and activity analysis that KlADH3 is expressed in the presence of low glucose concentrations and in the presence of respiratory carbon sources other than ethanol. Indeed ethanol acts as a strong repressor of this gene. On the other hand, KlADH4 is induced by the presence of ethanol and not by other respiratory carbon sources. We also demonstrate that the presence of KlADH III and KlADH IV in K. lactis cells is dependent on glucose concentration, glucose uptake and the amount of ethanol produced. As a consequence, these activities can be used as markers for the onset of respiratory and fermentative metabolism in this yeast.


Biochimica et Biophysica Acta | 1997

Structural and biochemical studies of alcohol dehydrogenase isozymes from Kluyveromyces lactis

Argante Bozzi; Michele Saliola; Claudio Falcone; Francesco Bossa; Filippo Martini

The cytosolic and mitochondrial alcohol dehydrogenases from Kluyveromyces lactis (KlADHs) were purified and characterised. Both the N-terminally blocked cytosolic isozymes, KlADH I and KlADH II, were strictly NAD-dependent and exhibited catalytic properties similar to those previously reported for other yeast ADHs. Conversely, the mitochondrial isozymes, KlADH III and KlADH IV, displayed Ala and Asn, respectively, as N-termini and were able to oxidise at an increased rate primary alcohols with aliphatic chains longer than ethanol, such as propanol, butanol, pentanol and hexanol. Interestingly, the mitochondrial KlADHs, at variance with cytosolic isozymes and the majority of ADHs from other sources, were capable of accepting as a cofactor, and in some case almost equally well, either NAD or NADP. Since Asp-223 of horse liver ADH, thought to be responsible for the selection of NAD as coenzyme, is strictly conserved in all the KlADH isozymes, this amino-acid residue should not be considered critical for the coenzyme discrimination with respect to the other residues lining the coenzyme binding pocket of the mitochondrial isozymes. The relatively low specificity of the mitochondrial KlADHs both toward the alcohols and the cofactor could be explained on the basis of an enhanced flexibility of the corresponding catalytic pockets. An involvement of the mitochondrial KlADH isozymes in the physiological reoxidation of the cytosolic NADPH was also hypothesized. Moreover, both cytosolic and KlADH IV isozymes have an additional cysteine, not involved in zinc binding, that could be responsible for the increased activity in the presence of 2-mercaptoethanol.


Journal of Bacteriology | 2001

Three Target Genes for the Transcriptional Activator Cat8p of Kluyveromyces lactis: Acetyl Coenzyme A Synthetase Genes KlACS1 and KlACS2 and Lactate Permease Gene KlJEN1

Tiziana Lodi; Michele Saliola; Claudia Donnini

The aerobic yeast Kluyveromyces lactis and the predominantly fermentative Saccharomyces cerevisiae share many of the genes encoding the enzymes of carbon and energy metabolism. The physiological features that distinguish the two yeasts appear to result essentially from different organization of regulatory circuits, in particular glucose repression and gluconeogenesis. We have isolated the KlCAT8 gene (a homologue of S. cerevisiae CAT8, encoding a DNA binding protein) as a multicopy suppressor of a fog1 mutation. The Fog1 protein is a homologue of the Snf1 complex components Gal83p, Sip1p, and Sip2p of S. cerevisiae. While CAT8 controls the key enzymes of gluconeogenesis in S. cerevisiae, KlCAT8 of K. lactis does not (I. Georis, J. J. Krijger, K. D. Breunig, and J. Vandenhaute, Mol. Gen. Genet. 264:193-203, 2000). We therefore examined possible targets of KlCat8p. We found that the acetyl coenzyme A synthetase genes, KlACS1 and KlACS2, were specifically regulated by KlCAT8, but very differently from the S. cerevisiae counterparts. KlACS1 was induced by acetate and lactate, while KlACS2 was induced by ethanol, both under the control of KlCAT8. Also, KlJEN1, encoding the lactate-inducible and glucose-repressible lactate permease, was found under a tight control of KlCAT8.


Eukaryotic Cell | 2004

The Deletion of the Succinate Dehydrogenase Gene KlSDH1 in Kluyveromyces lactis Does Not Lead to Respiratory Deficiency

Michele Saliola; Paola Chiara Bartoccioni; Ilaria De Maria; Tiziana Lodi; Claudio Falcone

ABSTRACT We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose.


Eukaryotic Cell | 2007

Deletion of the Glucose-6-Phosphate Dehydrogenase Gene KlZWF1 Affects both Fermentative and Respiratory Metabolism in Kluyveromyces lactis

Michele Saliola; Gina Scappucci; Ilaria De Maria; Tiziana Lodi; Patrizia Mancini; Claudio Falcone

ABSTRACT In Kluyveromyces lactis, the pentose phosphate pathway is an alternative route for the dissimilation of glucose. The first enzyme of the pathway is the glucose-6-phosphate dehydrogenase (G6PDH), encoded by KlZWF1. We isolated this gene and examined its role. Like ZWF1 of Saccharomyces cerevisiae, KlZWF1 was constitutively expressed, and its deletion led to increased sensitivity to hydrogen peroxide on glucose, but unlike the case for S. cerevisiae, the Klzwf1Δ strain had a reduced biomass yield on fermentative carbon sources as well as on lactate and glycerol. In addition, the reduced yield on glucose was associated with low ethanol production and decreased oxygen consumption, indicating that this gene is required for both fermentation and respiration. On ethanol, however, the mutant showed an increased biomass yield. Moreover, on this substrate, wild-type cells showed an additional band of activity that might correspond to a dimeric form of G6PDH. The partial dimerization of the G6PDH tetramer on ethanol suggested the production of an NADPH excess that was negative for biomass yield.


Yeast | 1997

Identification of Gene encoding a Putative RNA-Helicase, Homologous to SKI2, in Chromosome VII of Saccharomyces cerevisiae

Enzo Martegani; Marco Vanoni; Isabella Mauri; Silvia Rudoni; Michele Saliola; Lilia Alberghina

We have determined the nucleotide sequence of a segment of chromosome VII of the yeast Saccharomyces cerevisiae contained in the cosmid clone pEGH101 for a total of 7 kbp. This sequence contains a large open reading frame (ORF) called G9365, coding for a protein of 1967 amino acids that shows a significant homology with the product of the SKI2 gene of S. cerevisiae and contains domains characteristic of RNA‐helicases. The ORF is transcribed in vegetative cells but it is not essential for viability as demonstrated by gene disruption. The sequence has been deposited in the GenBank data library under Accession Number U35242.


Fems Yeast Research | 2008

Characterization of KlGUT2, a gene of the glycerol‐3‐phosphate shuttle, in Kluyveromyces lactis

Michele Saliola; Marialuisa Sponziello; Sirio D'Amici; Tiziana Lodi; Claudio Falcone

KlGUT2 encodes the mitochondrial component of the glycerol-3-phosphate shuttle in Kluyveromyces lactis, a dehydrogenase involved in the maintenance of the NADH redox balance and in glycerol utilization. Deletion of KlGUT2 led to glycerol accumulation during growth in glucose and growth retardation in ethanol. In addition, KlGUT2 deletion altered the expression of other mitochondrial dehydrogenases that contribute to the maintenance of the intracellular redox balance, suggesting a rerouting of ethanol oxidation from the cytoplasm to the mitochondria. Finally, Northern analysis showed that KlGUT2 has two transcripts: one constitutively expressed and dependent on HGT1, the high-affinity hexose transporter gene, and the other induced under respiratory conditions.

Collaboration


Dive into the Michele Saliola's collaboration.

Top Co-Authors

Avatar

Claudio Falcone

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Cristina Mazzoni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Uccelletti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Filippo Martini

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Tramonti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Laura Frontali

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Patrizia Mancini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge