Tiziana Lodi
University of Parma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tiziana Lodi.
American Journal of Human Genetics | 2009
Alessio Di Fonzo; Dario Ronchi; Tiziana Lodi; Elisa Fassone; Marco Tigano; Costanza Lamperti; Stefania Corti; Andreina Bordoni; Francesco Fortunato; Monica Nizzardo; Laura Napoli; Chiara Donadoni; Sabrina Salani; Francesca Saladino; Maurizio Moggio; Nereo Bresolin; Iliana Ferrero; Giacomo P. Comi
A disulfide relay system (DRS) was recently identified in the yeast mitochondrial intermembrane space (IMS) that consists of two essential components: the sulfhydryl oxidase Erv1 and the redox-regulated import receptor Mia40. The DRS drives the import of cysteine-rich proteins into the IMS via an oxidative folding mechanism. Erv1p is reoxidized within this system, transferring its electrons to molecular oxygen through interactions with cytochrome c and cytochrome c oxidase (COX), thereby linking the DRS to the respiratory chain. The role of the human Erv1 ortholog, GFER, in the DRS has been poorly explored. Using homozygosity mapping, we discovered that a mutation in the GFER gene causes an infantile mitochondrial disorder. Three children born to healthy consanguineous parents presented with progressive myopathy and partial combined respiratory-chain deficiency, congenital cataract, sensorineural hearing loss, and developmental delay. The consequences of the mutation at the level of the patients muscle tissue and fibroblasts were 1) a reduction in complex I, II, and IV activity; 2) a lower cysteine-rich protein content; 3) abnormal ultrastructural morphology of the mitochondria, with enlargement of the IMS space; and 4) accelerated time-dependent accumulation of multiple mtDNA deletions. Moreover, the Saccharomyces cerevisiae erv1(R182H) mutant strain reproduced the complex IV activity defect and exhibited genetic instability of the mtDNA and mitochondrial morphological defects. These findings shed light on the mechanisms of mitochondrial biogenesis, establish the role of GFER in the human DRS, and promote an understanding of the pathogenesis of a new mitochondrial disease.
Molecular Genetics and Genomics | 1993
Tiziana Lodi; Iliana Ferrero
In Saccharomyces cerevisiae the utilization of lactate occurs via specific oxidation of l- and d-lactate to pyruvate catalysed by l-lactate ferricytochrome c oxidoreductase (L-LCR) (EC 1.1.2.3) encoded by the CYB2 gene, and d-lactate ferricytochrome c oxidoreductase (D-LCR) (EC 1.1.2.4), respectively. We selected several lactate− pyruvate+ mutants in a cyb2 genetic background. Two of them were devoid of D -LCR activity (dld mutants, belonging to the same complementation group). The mutation mapped in the structural gene. This was demonstrated by a gene dosage effect and by the thermosensitivity of the enzyme activity of thermosensitive revertants. The DLD gene was cloned by complementation for growth on d-, l-lactate in the strain WWF18-3D, carrying both a CYB2 disruption and the dld mutation. The minimal complete complementing sequence was localized by subcloning experiments. From the sequence analysis an open reading frame (ORF) was identified that could encode a polypeptide of 576 amino-acids, corresponding to a calculated molecular weight of 64000 Da. The deduced protein sequence showed significant homology with the previously described microsomal flavoprotein l-gulono-γ-lactone oxidase isolated from Rattus norvegicus, which catalyses the terminal step of l-ascorbic acid biosynthesis. These results are discussed together with the role of L-LCR and D-LCR in lactate metabolism of S. cerevisiae.
Current Genetics | 1996
Antonella Ficarelli; Claudia Donnini; Tiziana Lodi; Pier Paolo Puglisi; Iliana Ferrero
Abstract The fog1 and fog2 mutants of the yeast Kluyveromyces lactis were identified by inability to grow on a number of both fermentable and non-fermentable carbon sources. Genetic and physiological evidences suggest a role for FOG1 and FOG2 in the regulation of glucose-repressible gene expression in response to a glucose limitation. The regulatory effect appears to be at the transcriptional level, at least for β-galactosidase. Both genes have been cloned by complementation and sequenced. FOG1 is a unique gene homologous to GAL83, SIP1 and SIP2, a family of regulatory genes affecting glucose repression of the GAL system in Saccharomyces cerevisiae. However, major differences exist between fog1 and gal83 mutants. FOG2 is structurally and functionally homologous to SNF1 of S. cerevisiae and shares with SNF1 a role also in sporulation.
Applied and Environmental Microbiology | 2005
Tiziana Lodi; Barbara Neglia; Claudia Donnini
ABSTRACT The control of protein conformation during translocation through the endoplasmic reticulum is often a bottleneck for heterologous protein production. The core pathway of the oxidative folding machinery includes two conserved proteins: Pdi1p and Ero1p. We increased the dosage of the genes encoding these proteins in the yeast Kluyveromyces lactis and evaluated the secretion of heterologous proteins. KlERO1, an orthologue of Saccharomyces cerevisiae ERO1, was cloned by functional complementation of the ts phenotype of an Scero1 mutant. The expression of KlERO1 was induced by treatment of the cells with dithiothreitol and by overexpression of human serum albumin (HSA), a disulfide bond-rich protein. Duplication of either PDI1 or ERO1 led to a similar increase in HSA yield. Duplication of both genes accelerated the secretion of HSA and improved cell growth rate and yield. Increasing the dosage of KlERO1 did not affect the production of human interleukin 1β, a protein that has no disulfide bridges. The results confirm that the ERO1 genes of S. cerevisiae and K. lactis are functionally similar even though portions of their coding sequence are quite different and the phenotypes of mutants overexpressing the genes differ. The marked effects of KlERO1 copy number on the expression of heterologous proteins with a high number of disulfide bridges suggests that control of KlERO1 and KlPDI1 is important for the production of high levels of heterologous proteins of this type.
American Journal of Human Genetics | 2016
Kyle Thompson; Homa Majd; Christina Dallabona; Karit Reinson; Martin S. King; Charlotte L. Alston; Langping He; Tiziana Lodi; Simon A. Jones; Aviva Fattal-Valevski; Nitay D. Fraenkel; Ann Saada; Alon Haham; Pirjo Isohanni; Roshni Vara; Ines A. Barbosa; Michael A. Simpson; Charu Deshpande; Sanna Puusepp; Penelope E. Bonnen; Richard J. Rodenburg; Anu Suomalainen; Katrin Õunap; Orly Elpeleg; Ileana Ferrero; Robert McFarland; Edmund R. S. Kunji; Robert W. Taylor
Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.
Molecular Genetics and Genomics | 1994
Tiziana Lodi; David O'Connor; Iliana Ferrero
In the “petite-negative” yeast Kluyveromyces lactis carbon catabolite repression of some cytoplasmic enzymes has been observed. However, with respect to mitochondrial enzymes, in K. lactis, unlike the case in the “petite-positive” yeast Saccharomyces cerevisiae, growth on fermentable carbon sources does not cause repression of respiratory enzymes. In this paper data are reported on carbon catabolite repression of mitochondrial enzymes in K. lactis, in particular on l- and d-lactate ferricytochrome c oxidoreductase (LCR). The l- and d-LCR (E.C. 1123, E.C. 1124) in yeast catalyze the stereospecific oxidation of d and l isomers of lactate to pyruvate. This pathway is linked to the respiratory chain, cytochrome c being the electron acceptor of the redox reaction. We demonstrate that the level of mitochondrial d- and l-LCR is controlled by the carbon source, being induced by the substrate lactate and catabolite-repressed by glucose. We cloned the structural gene for d-LCR of K. lactis (KlDLD), by complementation of growth on d,l-lactate in the S. cerevisiae strain WWF18-3D, carrying both a CYB2 disruption and the dld mutation. From the sequence analysis an open reading frame was identified that could encode a polypeptide of 579 amino acids, corresponding to a calculated molecular weight of 63 484 Da. Analysis of mRNA expression indicated that glucose repression and induction by lactate are exerted at the transcriptional level.
Molecular Genetics and Genomics | 2002
Tiziana Lodi; F. Fontanesi; B. Guiard
Abstract. In the yeast Saccharomyces cerevisiae, the first step in lactate metabolism is its transport across the plasma membrane, a proton symport process mediated by the product of the gene JEN1. Under aerobic conditions, the expression of JEN1 is regulated by the carbon source: the gene is repressed by glucose and induced by non-fermentable substrates. JEN1 expression is also controlled by oxygen availability, but is unaffected by the absence of haem biosynthesis. JEN1 is negatively regulated by the repressors Mig1p and Mig2p, and requires Cat8p for full derepression. In this report we demonstrate that, in addition to these regulators, the Hap2/3/4/5 complex interacts specifically with a CAAT-box element in the JEN1 promoter, and acts to derepress JEN1 expression. We also provide evidence for transcriptional stimulation of JEN1 by the protein kinase Snf1p. Data are presented which provide a better understanding of the molecular mechanisms implicated in the co-regulation of genes involved in the metabolism of lactate.
Molecular Genetics and Genomics | 1999
Tiziana Lodi; Adriana Alberti; B. Guiard; Iliana Ferrero
Abstract Expression of the nuclear gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase (D-LCR) was investigated in Saccharomyces cerevisiae. This gene (DLD1) was found to be subject to several regulatory controls at the transcriptional level: synthesis of DLD1 mRNA is repressed by glucose, is derepressed in ethanol or lactate and is heme dependent. We therefore examined the role of the heme-dependent transcriptional activator Hap1p and the carbon source-dependent Hap2/3/4/5 complex. We found that the Hap2/3/4/5 complex and Hap1p have additive effects on the activation of DLD1 transcription: the Hap2/3/4/5 complex is necessary for DLD1 derepression following a shift from fermentable to non-fermentable carbon sources, while the Hap1p effect was independent of the carbon sources tested. An upstream region required for expression and regulation of the DLD1 gene was identified. Within this region the binding sites for both the Hap2/3/4/5 complex and Hap1p were defined by gel retardation experiments and site-directed mutagenesis. Comparison between sequences recognized by Hap1p in different promoters showed that the Hap1p binding site in the DLD1 promoter diverges from the consensus Hap1p binding site.
Journal of Bacteriology | 2001
Tiziana Lodi; Michele Saliola; Claudia Donnini
The aerobic yeast Kluyveromyces lactis and the predominantly fermentative Saccharomyces cerevisiae share many of the genes encoding the enzymes of carbon and energy metabolism. The physiological features that distinguish the two yeasts appear to result essentially from different organization of regulatory circuits, in particular glucose repression and gluconeogenesis. We have isolated the KlCAT8 gene (a homologue of S. cerevisiae CAT8, encoding a DNA binding protein) as a multicopy suppressor of a fog1 mutation. The Fog1 protein is a homologue of the Snf1 complex components Gal83p, Sip1p, and Sip2p of S. cerevisiae. While CAT8 controls the key enzymes of gluconeogenesis in S. cerevisiae, KlCAT8 of K. lactis does not (I. Georis, J. J. Krijger, K. D. Breunig, and J. Vandenhaute, Mol. Gen. Genet. 264:193-203, 2000). We therefore examined possible targets of KlCat8p. We found that the acetyl coenzyme A synthetase genes, KlACS1 and KlACS2, were specifically regulated by KlCAT8, but very differently from the S. cerevisiae counterparts. KlACS1 was induced by acetate and lactate, while KlACS2 was induced by ethanol, both under the control of KlCAT8. Also, KlJEN1, encoding the lactate-inducible and glucose-repressible lactate permease, was found under a tight control of KlCAT8.
Eukaryotic Cell | 2004
Michele Saliola; Paola Chiara Bartoccioni; Ilaria De Maria; Tiziana Lodi; Claudio Falcone
ABSTRACT We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose.