Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele T. Jay-Russell is active.

Publication


Featured researches published by Michele T. Jay-Russell.


International Journal of Food Microbiology | 2013

Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast.

Lisa Benjamin; Edward R. Atwill; Michele T. Jay-Russell; Michael B. Cooley; Diana Carychao; Lisa Gorski; Robert E. Mandrell

Irrigation with water of poor microbiological quality can elevate levels of bacteria on produce. This study aimed to identify climate and management variables associated with generic Escherichia coli in irrigation water on leafy green produce farms and to measure the prevalence of E. coli O157 and Salmonella spp. in irrigation and non-irrigation water sources on these farms. Water and sediment samples collected from various points along irrigation systems, as well as from streams and ponds on farms on the Central California coast between May 27th, 2008 and October 26th, 2010 were cultured for generic E. coli (MPN/100 mL or cfu 100 g) (n=436), E. coli O157 (n=437), and (n=163) Salmonella. Variables were based on growers management practices, landscape features in proximity to samples (e.g., distance to roads and ranches/livestock), and climate data accessed from an online database. Negative binomial regression models were constructed to test associations between generic E. coli (MPN/100 mL) in water from farms and variables. Arithmetic mean concentration of E. coli for water, not including those from Moore swabs, and sediment samples, was 7.1×10(2) MPN/100 mL and 1.0×10(4) cfu/100 g, respectively. Matched by collection day, E. coli concentration in sediment (cfu/100 g) was typically 10- to 1000-fold higher than the overlying water (MPN/100 mL) for these irrigation systems. Generic E. coli concentration (MPN/100 mL) increased by 60.1% for each 1m/s increase in wind speed and decreased by 3% for each 10 m increase in the distance between the sample location and rangeland. Moore swabs detected a higher proportion of E. coli O157 (13.8%) positive water samples compared to grab samples (1.8%); 1.7% of sediment samples had detectable levels of this pathogen. Interestingly, season was not significantly associated with E. coli O157 presence in water or sediments from produce farms or water sources with public access. Salmonella was detected in 6% (6/96) water and 4.3% (3/67) sediment samples. Generic E. coli concentration was not significantly associated with the presence of either E. coli O157 or Salmonella in water or sediment samples, suggesting that, for this 2.5-year period and geographical location, generic E. coli would likely be an unreliable indicator bacteria for predicting the presence of these food- and waterborne pathogens in a key produce production environment.


PLOS ONE | 2013

Development of a Robust Method for Isolation of Shiga Toxin-Positive Escherichia coli (STEC) from Fecal, Plant, Soil and Water Samples from a Leafy Greens Production Region in California

Michael B. Cooley; Michele T. Jay-Russell; Edward R. Atwill; Diana Carychao; Kimberly Nguyen; Beatriz Quiñones; Ronak Patel; Samarpita Walker; Michelle S. Swimley; Edith Pierre-Jerome; Andrew G. Gordus; Robert E. Mandrell

During a 2.5-year survey of 33 farms and ranches in a major leafy greens production region in California, 13,650 produce, soil, livestock, wildlife, and water samples were tested for Shiga toxin (stx)-producing Escherichia coli (STEC). Overall, 357 and 1,912 samples were positive for E. coli O157:H7 (2.6%) or non-O157 STEC (14.0%), respectively. Isolates differentiated by O-typing ELISA and multilocus variable number tandem repeat analysis (MLVA) resulted in 697 O157:H7 and 3,256 non-O157 STEC isolates saved for further analysis. Cattle (7.1%), feral swine (4.7%), sediment (4.4%), and water (3.3%) samples were positive for E. coli O157:H7; 7/32 birds, 2/145 coyotes, 3/88 samples from elk also were positive. Non-O157 STEC were at approximately 5-fold higher incidence compared to O157 STEC: cattle (37.9%), feral swine (21.4%), birds (2.4%), small mammals (3.5%), deer or elk (8.3%), water (14.0%), sediment (12.3%), produce (0.3%) and soil adjacent to produce (0.6%). stx1, stx2 and stx1/stx2 genes were detected in 63%, 74% and 35% of STEC isolates, respectively. Subtilase, intimin and hemolysin genes were present in 28%, 25% and 79% of non-O157 STEC, respectively; 23% were of the “Top 6″ O-types. The initial method was modified twice during the study revealing evidence of culture bias based on differences in virulence and O-antigen profiles. MLVA typing revealed a diverse collection of O157 and non-O157 STEC strains isolated from multiple locations and sources and O157 STEC strains matching outbreak strains. These results emphasize the importance of multiple approaches for isolation of non-O157 STEC, that livestock and wildlife are common sources of potentially virulent STEC, and evidence of STEC persistence and movement in a leafy greens production environment.


Applied and Environmental Microbiology | 2013

Fecal Shedding of Zoonotic Food-Borne Pathogens by Wild Rodents in a Major Agricultural Region of the Central California Coast

Christopher Kilonzo; Xunde Li; Eduardo J. Vivas; Michele T. Jay-Russell; Kristine L. Fernandez; Edward R. Atwill

ABSTRACT Recent outbreaks of food-borne illness associated with the consumption of produce have increased concern over wildlife reservoirs of food-borne pathogens. Wild rodents are ubiquitous, and those living close to agricultural farms may pose a food safety risk should they shed zoonotic microorganisms in their feces near or on agricultural commodities. Fecal samples from wild rodents trapped on 13 agricultural farms (9 produce, 3 cow-calf operations, and 1 beef cattle feedlot) in Monterey and San Benito Counties, CA, were screened to determine the prevalence and risk factors for shedding of several food-borne pathogens. Deer mice (Peromyscus maniculatus) were the most abundant rodent species trapped (72.5%). Cryptosporidium species (26.0%) and Giardia species (24.2%) were the predominant isolates from rodent feces, followed by Salmonella enterica serovars (2.9%) and Escherichia coli O157:H7 (0.2%). Rodent trap success was significantly associated with detection of Salmonella in rodent feces, while farm type was associated with fecal shedding of Cryptosporidium and Giardia. Seasonal shedding patterns were evident, with rodents trapped during the spring and summer months being significantly less likely to be shedding Cryptosporidium oocysts than those trapped during autumn. Higher rodent species diversity tended to correlate with lower fecal microbial prevalence, and most spatiotemporal pathogen clusters involved deer mice. Rodents in the study area posed a minimal risk as environmental reservoirs of E. coli O157:H7, but they may play a role in environmental dissemination of Salmonella and protozoa. Rodent control efforts that potentially reduce biodiversity may increase pathogen shedding, possibly through promotion of intraspecific microbial transmission.


Foodborne Pathogens and Disease | 2013

Diversity of pulsed-field gel electrophoresis pulsotypes, serovars, and antibiotic resistance among Salmonella isolates from wild amphibians and reptiles in the California Central Coast.

Lisa Gorski; Michele T. Jay-Russell; Anita S. Liang; Samarpita Walker; Yingjia Bengson; Jessica Govoni; Robert E. Mandrell

A survey of cold-blooded vertebrates and associated surface waters in a produce-growing region on the Central California Coast was done between May and September 2011 to determine the diversity of Salmonella. Samples from 460 amphibians and reptiles and 119 water samples were collected and cultured for Salmonella. Animals sampled were frogs (n=331), lizards (n=59), newts (n=5), salamanders (n=6), snakes (n=39), and toads (n=20). Salmonella was isolated from 37 individual animals, including frogs, lizards, snakes, and toads. Snakes were the most likely to contain Salmonella, with 59% testing positive followed by 15.3% of lizards, 5% of toads, and 1.2% of frogs. Fifteen water samples (12.6%) were positive. Twenty-two different serovars were identified, and the majority of isolates were S. enterica subsp. IIIb, with subsp. I, II, and IIIa also found. The serovar isolated most frequently was S. enterica subsp. IIIb 16:z₁₀:e,n,x,z₁₅, from snakes and frogs in five different locations. S. enterica subsp. I serovar Typhimurium and the monophasic I 6,8:d:- were isolated from water, and subspecies I Duisburg and its variants were found in animals and water. Some samples contained more than one type of Salmonella. Analysis of pulsed-field gel electrophoresis pulsotypes indicated that some strains persisted in animals and water collected from the same location. Sixty-six isolates displayed antibiotic resistance, with 27 isolates resistant to more than one antibiotic, including a subspecies IIIb isolate from snake having resistance to five different antibiotics. Twenty-three isolates were resistant to more than one class of antibiotic, and six isolates were resistant to three classes. While these subspecies of IIIa and IIIb cause fewer instances of human illness, they may serve as reservoirs of antibiotic resistance, determinants in the environment, and be sources of contamination of leafy greens associated with product recalls.


Zoonoses and Public Health | 2012

Isolation of Campylobacter from feral swine (Sus scrofa) on the ranch associated with the 2006 Escherichia coli O157:H7 spinach outbreak investigation in California.

Michele T. Jay-Russell; Anna H. Bates; L. Harden; William G. Miller; Robert E. Mandrell

We report the isolation of Campylobacter species from the same population of feral swine that was investigated in San Benito County, California, during the 2006 spinach‐related Escherichia coli O157:H7 outbreak. This is the first survey of Campylobacter in a free‐ranging feral swine population in the United States. Campylobacter species were cultured from buccal and rectal‐anal swabs, colonic faeces and tonsils using a combination of selective enrichment and antibiotic‐free membrane filtration methods. Matrix‐assisted laser desorption ionization–time of flight mass spectrometry (MALDI‐TOF‐MS, Bruker Daltonics, Inc., Billerica, MA, USA) was used to identify species followed by confirmatory multiplex PCR or 16S rRNA sequencing. Genetic relatedness of Campylobacter jejuni and Campylobacter coli strains was determined by multilocus sequence typing (MLST) and porA allele sequencing. Altogether, 12 (40%) of 30 feral swine gastrointestinal and oral cavity specimens were positive, and six species were isolated: Campylobacter coli, Campylobacter fetus, Campylobacter hyointestinalsis, Campylobacter jejuni, Campylobacter lanienae and Campylobacter sputorum. Campylobacter jejuni subtypes were closely related to MLST sequence type 21 (ST‐21) and had identical porA sequences. Campylobacter coli subtypes were unrelated to isolates in the pubMLST/porA database. This feral swine population lived in close association with a ‘grassfed’ beef cattle herd adjacent to spinach and other leafy green row crop fields. The findings underscore the importance of protecting raw vegetable crops from faecal contamination by wild or feral animals. The study also illustrates a potential risk of Campylobacter exposure for hunters during handling and processing of wild swine meat.


Zoonoses and Public Health | 2014

Salmonella Oranienburg isolated from horses, wild turkeys and an edible home garden fertilized with raw horse manure.

Michele T. Jay-Russell; J. E. Madigan; Y. Bengson; S. Madigan; A. F. Hake; J. E. Foley; B. A. Byrne

In July 2010, a horse from a rural farm (Farm A) in coastal Northern California was diagnosed with Salmonella Oranienburg infection following referral to a veterinary hospital for colic surgery. Environmental sampling to identify potential sources and persistence of Salmonella on the farm was conducted from August 2010 to March 2011. Salmonella was cultured using standard enrichment and selective plating. Pure colonies were confirmed by biochemical analysis, serotyped and compared by pulsed‐field gel electrophoresis (PFGE) analysis. A total of 204 clinical and environmental samples at Farm A were analysed, and Salmonella spp. was isolated from six of eight (75%) horses, an asymptomatic pet dog, two of seven (28.6%) water samples from horse troughs, nine of 20 (45%) manure storage pile composites, 16 of 71 (22.5%) wild turkey faeces and four of 39 (10.3%) soil samples from the familys edible home garden. Well water and garden vegetable samples and horse faecal samples from a neighbouring ranch were negative. S. Oranienburg with a PFGE pattern indistinguishable from the horse clinical strain was found in all positive sample types on Farm A. The investigation illustrates the potential for widespread dissemination of Salmonella in a farm environment following equine infections. We speculate that a recent surge in the wild turkey population on the property could have introduced S. Oranienburg into the herd, although we cannot rule out the possibility wild turkeys were exposed on the farm or to other potential sources of Salmonella. Findings from the investigation indicated that raw horse manure applied as fertilizer was the most likely source of garden soil contamination. Viable S. Oranienburg persisted in garden soil for an estimated 210 days, which exceeds the 120‐day standard between application and harvest currently required by the National Organic Program. The study underscores the need to educate the public about potential food safety hazards associated with using raw animal manure to fertilize edible home gardens.


PLOS ONE | 2014

Prevalence and Characterization of Escherichia coli and Salmonella Strains Isolated from Stray Dog and Coyote Feces in a Major Leafy Greens Production Region at the United States-Mexico Border

Michele T. Jay-Russell; Alexis F. Hake; Yingjia Bengson; Anyarat Thiptara; Tran Nguyen

In 2010, Romaine lettuce grown in southern Arizona was implicated in a multi-state outbreak of Escherichia coli O145:H28 infections. This was the first known Shiga toxin-producing E. coli (STEC) outbreak traced to the southwest desert leafy green vegetable production region along the United States-Mexico border. Limited information exists on sources of STEC and other enteric zoonotic pathogens in domestic and wild animals in this region. According to local vegetable growers, unleashed or stray domestic dogs and free-roaming coyotes are a significant problem due to intrusions into their crop fields. During the 2010–2011 leafy greens growing season, we conducted a prevalence survey of STEC and Salmonella presence in stray dog and coyote feces. Fresh fecal samples from impounded dogs and coyotes from lands near produce fields were collected and cultured using extended enrichment and serogroup-specific immunomagnetic separation (IMS) followed by serotyping, pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility testing. A total of 461 fecal samples were analyzed including 358 domestic dog and 103 coyote fecals. STEC was not detected, but atypical enteropathogenic E. coli (aEPEC) strains comprising 14 different serotypes were isolated from 13 (3.6%) dog and 5 (4.9%) coyote samples. Salmonella was cultured from 33 (9.2%) dog and 33 (32%) coyote samples comprising 29 serovars with 58% from dogs belonging to Senftenberg or Typhimurium. PFGE analysis revealed 17 aEPEC and 27 Salmonella distinct pulsotypes. Four (22.2%) of 18 aEPEC and 4 (6.1%) of 66 Salmonella isolates were resistant to two or more antibiotic classes. Our findings suggest that stray dogs and coyotes in the desert southwest may not be significant sources of STEC, but are potential reservoirs of other pathogenic E. coli and Salmonella. These results underscore the importance of good agriculture practices relating to mitigation of microbial risks from animal fecal deposits in the produce production area.


Clinical Infectious Diseases | 2010

Raw (Unpasteurized) Milk: Are Health-Conscious Consumers Making an Unhealthy Choice?

Michele T. Jay-Russell

An increasing number of health-conscious consumers are seeking natural, unprocessed foods, including fresh, locally grown produce, eggs, poultry, and meats. Concomitant with this consumer interest, the US Department of Agriculture created Know Your Farmer, Know Your Food and the Farmers Market Promotion Program [1, 2]. These governmental programs seek to improve nutritional choices made by Americans with the goal to reduce the incidence of obesity, diabetes mellitus, and other chronic illnesses [3]. However, in the midst of trends toward choosing less processed foods is a growing consumer demand for raw (unpasteurized) dairy products. Advocates promote raw milk for its better taste and purported health benefits and as a way for consumers to support small dairies and local agriculture. At the same time, the public health community speaks in a nearly unanimous voice to warn consumers, farmers, and retail stores that sell the products about the


Journal of Clinical Microbiology | 2013

Using Major Outer Membrane Protein Typing as an Epidemiological Tool To Investigate Outbreaks Caused by Milk-Borne Campylobacter jejuni Isolates in California

Michele T. Jay-Russell; Robert E. Mandrell; Jean Yuan; Anna H. Bates; Rosa Manalac; Janet C. Mohle-Boetani; Akiko C. Kimura; Janice Lidgard; William G. Miller

ABSTRACT We describe using major outer membrane protein (MOMP) typing as a screen to compare the Campylobacter jejuni porA gene sequences of clinical outbreak strains from human stool with the porA sequences of dairy farm strains isolated during two milk-borne campylobacteriosis outbreak investigations in California. The genetic relatedness of clinical and environmental strains with identical or closely related porA sequences was confirmed by multilocus sequence typing and pulsed-field gel electrophoresis analysis. The first outbreak involved 1,644 C. jejuni infections at 11 state correctional facilities and was associated with consumption of pasteurized milk supplied by an on-site dairy (dairy A) at a prison in the central valley. The second outbreak involved eight confirmed and three suspect C. jejuni cases linked to consumption of commercial raw milk and raw chocolate colostrum at another central valley dairy (dairy B). Both dairies bottled fluid milk on the farm and distributed the finished product to off-site locations. Altogether, C. jejuni was isolated from 7 of 15 (46.7%) bovine fecal, 12 of 20 (60%) flush alley water, and 1 of 20 (5%) lagoon samples collected on dairy A. At dairy B, C. jejuni was cultured from 9 of 26 (34.6%) bovine fecal samples. Environmental strains indistinguishable from the clinical outbreak strains were found in five flush alley water samples (dairy A) and four bovine fecal samples (dairy B). The findings demonstrate that MOMP typing is a useful tool to triage environmental isolates prior to conducting more labor-intensive molecular typing methods.


Frontiers in Microbiology | 2016

A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni

Christian Penny; Beau Grothendick; Lin Zhang; Connie M. Borror; Duane Barbano; Angela J. Cornelius; Brent Gilpin; Clifton K. Fagerquist; William J. Zaragoza; Michele T. Jay-Russell; Albert J. Lastovica; Catherine Ragimbeau; Henry Michel Cauchie; Todd R. Sandrin

MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance.

Collaboration


Dive into the Michele T. Jay-Russell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert E. Mandrell

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Diana Carychao

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Michael B. Cooley

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Xunde Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna H. Bates

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Gorski

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge