Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelino Puopolo is active.

Publication


Featured researches published by Michelino Puopolo.


The Journal of Neuroscience | 2007

Roles of Subthreshold Calcium Current and Sodium Current in Spontaneous Firing of Mouse Midbrain Dopamine Neurons

Michelino Puopolo; Bruce P. Bean

We used a preparation of acutely dissociated neurons to quantify the ionic currents driving the spontaneous firing of substantia nigra pars compacta neurons, isolated from transgenic mice in which the tyrosine hydroxylase promoter drives expression of human placental alkaline phosphatase (PLAP) on the outer surface of the cell membrane. Dissociated neurons identified by fluorescent antibodies to PLAP showed firing properties similar to those of dopaminergic neurons in brain slice, including rhythmic spontaneous firing of broad action potentials and, in some cells, rhythmic oscillatory activity in the presence of tetrodotoxin (TTX). Spontaneous activity in TTX had broader, smaller spikes than normal pacemaking and was stopped by removal of external calcium. Normal pacemaking was also consistently silenced by replacement of external calcium by cobalt and was slowed by more specific calcium channel blockers. Nimodipine produced a slowing of pacemaking frequency. Pacemaking was also slowed by the P/Q-channel blocker ω-Aga-IVA, but the N-type channel blocker ω-conotoxin GVIA had no effect. In voltage-clamp experiments, using records of pacemaking as command voltage, cobalt-sensitive current and TTX-sensitive current were both sizeable at subthreshold voltages between spikes. Cobalt-sensitive current was consistently larger than TTX-sensitive current at interspike voltages from −70 to −50 mV, with TTX-sensitive current larger at voltages positive to −45 mV. These results support previous evidence for a major role of voltage-dependent calcium channels in driving pacemaking of midbrain dopamine neurons and suggest that multiple calcium channel types contribute to this function. The results also show a significant contribution of subthreshold TTX-sensitive sodium current.


Neuron | 2001

Extrasynaptic Release of Dopamine in a Retinal Neuron: Activity Dependence and Transmitter Modulation

Michelino Puopolo; Spencer E. Hochstetler; Stefano Gustincich; R. Mark Wightman

Extrasynaptic release of dopamine is well documented, but its relation to the physiological activity of the neuron is unclear. Here we show that in absence of presynaptic active zones, solitary cell bodies of retinal dopaminergic neurons release by exocytosis packets of approximately 40,000 molecules of dopamine at irregular intervals and low frequency. The release is triggered by the action potentials that the neurons generate in a rhythmic fashion upon removal of all synaptic influences and therefore depends upon the electrical events at the neuronal surface. Furthermore, it is stimulated by kainate and abolished by GABA and quinpirole, an agonist at the D(2) dopamine receptor. Since the somatic receptors for these ligands are extrasynaptic, we suggest that the composition of the extracellular fluid directly modulates extrasynaptic release.


Anesthesiology | 2009

Coapplication of Lidocaine and the Permanently Charged Sodium Channel Blocker QX-314 Produces a Long-lasting Nociceptive Blockade in Rodents

Alexander M. Binshtok; Peter Gerner; Seog Bae Oh; Michelino Puopolo; Suzuko Suzuki; David P. Roberson; Teri A. Herbert; Chi-Fei Wang; Donghoon Kim; Gehoon Chung; Aya A. Mitani; Ging Kuo Wang; Bruce P. Bean; Clifford J. Woolf

Background:Nociceptive-selective local anesthesia is produced by entry of the permanently charged lidocaine-derivative QX-314 into nociceptors when coadministered with capsaicin, a transient receptor potential vanilloid 1 (TRPV1) channel agonist. However, the pain evoked by capsaicin before establishment of the QX-314–mediated block would limit clinical utility. Because TRPV1 channels are also activated by lidocaine, the authors tested whether lidocaine can substitute for capsaicin to introduce QX-314 into nociceptors through TRPV1 channels and produce selective analgesia. Methods:Lidocaine (0.5% [17.5 mm], 1% [35 mm], and 2% [70 mm]) alone, QX-314 (0.2% [5.8 mm]) alone, and a combination of the two were injected subcutaneously and adjacent to the sciatic nerve in rats and mice. Mechanical and thermal responsiveness were measured, as was motor block. Results:Coapplication of 0.2% QX-314 with lidocaine prolonged the nociceptive block relative to lidocaine alone, an effect attenuated in TRPV1 knockout mice. The 0.2% QX-314 alone had no effect when injected intraplantary or perineurally, and it produced only weak short-lasting inhibition of the cutaneous trunci muscle reflex. Perisciatic nerve injection of lidocaine with QX-314 produced a differential nociceptive block much longer than the transient motor block, lasting 2 h (for 1% lidocaine) to 9 h (2% lidocaine). Triple application of lidocaine, QX-314, and capsaicin further increased the duration of the differential block. Conclusions:Coapplication of lidocaine and its quaternary derivative QX-314 produces a long-lasting, predominantly nociceptor-selective block, likely by facilitating QX-314 entry through TRPV1 channels. Delivery of QX-314 into nociceptors by using lidocaine instead of capsaicin produces sustained regional analgesia without nocifensive behavior.


The Journal of Neuroscience | 2013

Phenotyping the Function of TRPV1-Expressing Sensory Neurons by Targeted Axonal Silencing

Christian Brenneis; Katrin Kistner; Michelino Puopolo; David Segal; David W. Roberson; Marco Sisignano; Sandra Labocha; Nerea Ferreirós; Amanda Strominger; Enrique J. Cobos; Nader Ghasemlou; Gerd Geisslinger; Peter W. Reeh; Bruce P. Bean; Clifford J. Woolf

Specific somatosensations may be processed by different subsets of primary afferents. C-fibers expressing heat-sensitive TRPV1 channels are proposed, for example, to be heat but not mechanical pain detectors. To phenotype in rats the sensory function of TRPV1+ afferents, we rapidly and selectively silenced only their activity, by introducing the membrane-impermeant sodium channel blocker QX-314 into these axons via the TRPV1 channel pore. Using tandem mass spectrometry we show that upon activation with capsaicin, QX-314 selectively accumulates in the cytosol only of TRPV1-expressing cells, and not in control cells. Exposure to QX-314 and capsaicin induces in small DRG neurons a robust sodium current block within 30 s. In sciatic nerves, application of extracellular QX-314 with capsaicin persistently reduces C-fiber but not A-fiber compound action potentials and this effect does not occur in TRPV1−/− mice. Behavioral phenotyping after selectively silencing TRPV1+ sciatic nerve axons by perineural injections of QX-314 and capsaicin reveals deficits in heat and mechanical pressure but not pinprick or light touch perception. The response to intraplantar capsaicin is substantially reduced, as expected. During inflammation, silencing TRPV1+ axons abolishes heat, mechanical, and cold hyperalgesia but tactile and cold allodynia remain following peripheral nerve injury. These results indicate that TRPV1-expressing sensory neurons process particular thermal and mechanical somatosensations, and that the sensory channels activated by mechanical and cold stimuli to produce pain in naive/inflamed rats differ from those in animals after peripheral nerve injury.


The Journal of General Physiology | 2011

Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors

Frank Bosmans; Michelino Puopolo; Marie-France Martin-Eauclaire; Bruce P. Bean; Kenton J. Swartz

The voltage-activated sodium (Nav) channel Nav1.9 is expressed in dorsal root ganglion (DRG) neurons where it is believed to play an important role in nociception. Progress in revealing the functional properties and pharmacological sensitivities of this non-canonical Nav channel has been slow because attempts to express this channel in a heterologous expression system have been unsuccessful. Here, we use a protein engineering approach to dissect the contributions of the four Nav1.9 voltage sensors to channel function and pharmacology. We define individual S3b–S4 paddle motifs within each voltage sensor, and show that they can sense changes in membrane voltage and drive voltage sensor activation when transplanted into voltage-activated potassium channels. We also find that the paddle motifs in Nav1.9 are targeted by animal toxins, and that these toxins alter Nav1.9-mediated currents in DRG neurons. Our results demonstrate that slowly activating and inactivating Nav1.9 channels have functional and pharmacological properties in common with canonical Nav channels, but also show distinctive pharmacological sensitivities that can potentially be exploited for developing novel treatments for pain.


British Journal of Pharmacology | 2014

Bupivacaine-induced cellular entry of QX-314 and its contribution to differential nerve block

C Brenneis; Katrin Kistner; Michelino Puopolo; Sooyeon Jo; Dp Roberson; Marco Sisignano; David Segal; Enrique J. Cobos; Brian J. Wainger; Sandra Labocha; Nerea Ferreirós; C von Hehn; J Tran; Gerd Geisslinger; Peter W. Reeh; Bruce P. Bean; Clifford J. Woolf

Selective nociceptor fibre block is achieved by introducing the cell membrane impermeant sodium channel blocker lidocaine N‐ethyl bromide (QX‐314) through transient receptor potential V1 (TRPV1) channels into nociceptors. We screened local anaesthetics for their capacity to activate TRP channels, and characterized the nerve block obtained by combination with QX‐314.


Molecular Pain | 2015

Fatty acid binding protein deletion suppresses inflammatory pain through endocannabinoid/ N-acylethanolamine-dependent mechanisms

Martin Kaczocha; Sherrye T. Glaser; Thomas Maher; Brendan H. Clavin; John Hamilton; Joseph R. O’Rourke; Mario J. Rebecchi; Michelino Puopolo; Yuji Owada; Panayotis K. Thanos

BackgroundFatty acid binding proteins (FABPs) serve as intracellular carriers that deliver endocannabinoids and N-acylethanolamines to their catabolic enzymes. Inhibition of FABPs reduces endocannabinoid transport and catabolism in cells and FABP inhibitors produce antinociceptive and anti-inflammatory effects in mice. Potential analgesic effects in mice lacking FABPs, however, have not been tested.FindingsMice lacking FABP5 and FABP7, which exhibit highest affinities for endocannabinoids, possessed elevated levels of the endocannabinoid anandamide and the related N-acylethanolamines palmitoylethanolamide and oleoylethanolamide. There were no compensatory changes in the expression of other FABPs or in endocannabinoid-related proteins in the brains of FABP5/7 knockout mice. These mice exhibited reduced nociception in the carrageenan, formalin, and acetic acid tests of inflammatory and visceral pain. The antinociceptive effects in FABP5/7 knockout mice were reversed by pretreatment with cannabinoid receptor 1, peroxisome proliferator-activated receptor alpha, and transient receptor potential vanilloid 1 receptor antagonists in a modality specific manner. Lastly, the knockout mice did not possess motor impairments.ConclusionsThis study demonstrates that mice lacking FABPs possess elevated levels of N-acylethanolamines, consistent with the idea that FABPs regulate the endocannabinoid and N-acylethanolamine tone in vivo. The antinociceptive effects observed in the knockout mice support a role for FABPs in regulating nociception and suggest that these proteins should serve as targets for the development of future analgesics.


PLOS ONE | 2015

Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age

William Galbavy; Martin Kaczocha; Michelino Puopolo; Lixin Liu; Mario J. Rebecchi

Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG), have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC), and DRG from young and middle-aged (3, 17 month) naïve rats, or from rats subjected to chronic constriction injury (CCI) of the sciatic nerve (after 7 days), or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3); whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical) were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however, did not affect the establishment of neuropathic pain.


Molecular Pain | 2017

Fatty-acid-binding protein inhibition produces analgesic effects through peripheral and central mechanisms:

Xiaoxue Peng; Keith M. Studholme; Martha P. Kanjiya; Jennifer Luk; Diane Bogdan; Matthew W. Elmes; Gregory Carbonetti; Simon Tong; Yu-Han Gary Teng; Robert C. Rizzo; Huilin Li; Dale G. Deutsch; Iwao Ojima; Mario J. Rebecchi; Michelino Puopolo; Martin Kaczocha

Background Fatty-acid-binding proteins (FABPs) are intracellular carriers for endocannabinoids, N-acylethanolamines, and related lipids. Previous work indicates that systemically administered FABP5 inhibitors produce analgesia in models of inflammatory pain. It is currently not known whether FABP inhibitors exert their effects through peripheral or central mechanisms. Here, we examined FABP5 distribution in dorsal root ganglia and spinal cord and examined the analgesic effects of peripherally and centrally administered FABP5 inhibitors. Results Immunofluorescence revealed robust expression of FABP5 in lumbar dorsal root ganglia. FABP5 was distributed in peptidergic calcitonin gene-related peptide-expressing dorsal root ganglia and non-peptidergic isolectin B4-expressing dorsal root ganglia. In addition, the majority of dorsal root ganglia expressing FABP5 also expressed transient receptor potential vanilloid 1 (TRPV1) and peripherin, a marker of nociceptive fibers. Intraplantar administration of FABP5 inhibitors reduced thermal and mechanical hyperalgesia in the complete Freund’s adjuvant model of chronic inflammatory pain. In contrast to its robust expression in dorsal root ganglia, FABP5 was sparsely distributed in the lumbar spinal cord and intrathecal administration of FABP inhibitor did not confer analgesic effects. Administration of FABP inhibitor via the intracerebroventricular (i.c.v.) route reduced thermal hyperalgesia. Antagonists of peroxisome proliferator-activated receptor alpha blocked the analgesic effects of peripherally and i.c.v. administered FABP inhibitor while antagonism of cannabinoid receptor 1 blocked the effects of peripheral FABP inhibition and a TRPV1 antagonist blocked the effects of i.c.v. administered inhibitor. Although FABP5 and TRPV1 were co-expressed in the periaqueductal gray region of the brain, which is known to modulate pain, knockdown of FABP5 in the periaqueductal gray using adeno-associated viruses and pharmacological FABP5 inhibition did not produce analgesic effects. Conclusions This study demonstrates that FABP5 is highly expressed in nociceptive dorsal root ganglia neurons and FABP inhibitors exert peripheral and supraspinal analgesic effects. This indicates that peripherally restricted FABP inhibitors may serve as a new class of analgesic and anti-inflammatory agents.


The Journal of Physiology | 2017

Presynaptic inhibition of transient receptor potential vanilloid type 1 (TRPV1) receptors by noradrenaline in nociceptive neurons

Saikat Chakraborty; Vincent Elvezio; Martin Kaczocha; Mario J. Rebecchi; Michelino Puopolo

The transient receptor potential vanilloid type 1 (TRPV1) receptor is a polymodal molecular integrator in the pain pathway expressed in Aδ‐ and C‐fibre nociceptors and is responsible for the thermal hyperalgesia associated with inflammatory pain. Noradrenaline strongly inhibited the activity of TRPV1 channels in dorsal root ganglia neurons. The effect of noradrenaline was reproduced by clonidine and antagonized by yohimbine, consistent with contribution of α2 adrenergic receptors. The inhibitory effect of noradrenaline on TRPV1 channels was dependent on calcium influx and linked to calcium/calmodulin‐dependent protein kinase II. In spinal cord slices, clonidine reduced the frequency of capsaicin‐induced miniature EPSCs in the presence of tetrodotoxin and ω‐conotoxin‐MVIIC, consistent with inhibition of presynaptic TRPV1 channels by α2 adrenergic receptors. We suggest that modulation of presynaptic TRPV1 channels in nociceptive neurons by descending noradrenergic inputs may constitute a mechanism for noradrenaline to modulate incoming noxious stimuli in the dorsal horn of the spinal cord.

Collaboration


Dive into the Michelino Puopolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clifford J. Woolf

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Yong Lu

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Stefano Gustincich

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iwao Ojima

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Mark Wightman

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge