Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle F. Browner is active.

Publication


Featured researches published by Michelle F. Browner.


Journal of Medicinal Chemistry | 2008

Surface Plasmon Resonance Based Assay for the Detection and Characterization of Promiscuous Inhibitors

Anthony M. Giannetti; Bruce D. Koch; Michelle F. Browner

Promiscuous binders achieve enzyme inhibition using a nonspecific aggregation-type binding mechanism to proteins. These compounds are a source of false-positive hits in biochemical inhibition assays and should be removed from screening hit lists because they are not good candidates to initiate medicinal chemistry programs. We introduce a robust approach to identify these molecules early in the lead generation process using real time surface plasmon resonance based biosensors to observe the behavior of the binding interactions between promiscuous compounds and proteins. Furthermore, the time resolution of the assay reveals a number of distinct mechanisms that promiscuous compounds employ to inhibit enzyme function and indicate that the type of mechanism can vary depending on the protein target. A classification scheme for these compounds is presented that can be used to rapidly characterize the hits from high-throughput screens and eliminate compounds with a nonspecific mechanism of inhibition.


Journal of Virology | 2006

Selection and Characterization of Replicon Variants Dually Resistant to Thumb- and Palm-Binding Nonnucleoside Polymerase Inhibitors of the Hepatitis C Virus

Sophie Le Pogam; Hyunsoon Kang; Seth F. Harris; Vincent Leveque; Anthony M. Giannetti; Samir Ali; Wen-Rong Jiang; Sonal Rajyaguru; Gisele Tavares; Connie Oshiro; Than Hendricks; Klaus Klumpp; Julian A. Symons; Michelle F. Browner; Nick Cammack; Isabel Najera

ABSTRACT Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants.


Journal of Biological Chemistry | 1996

DEFINING THE ARACHIDONIC ACID BINDING SITE OF HUMAN 15-LIPOXYGENASE : MOLECULAR MODELING AND MUTAGENESIS

Qing-Fen Gan; Michelle F. Browner; David L. Sloane; Elliott Sigal

Mammalian lipoxygenases have been implicated in the pathogenesis of several inflammatory disorders and are, therefore, important targets for drug discovery. Both plant and mammalian lipoxygenases catalyze the dioxygenation of polyunsaturated fatty acids, which contain one or more 1,4-cis,cis-pentadiene units to yield hydroperoxide products. At the time this study was initiated, soybean lipoxygenase-1 was the only lipoxygenase for which an atomic resolution structure had been determined. No structure of lipoxygenase with substrate or inhibitor bound is currently available. A model of arachidonic acid docked into the proposed substrate binding site in the soybean structure is presented here. Analysis of this model suggested two residues, an aromatic residue and a positively charged residue, could be critical for substrate binding. Validation of this model is provided by site-directed mutagenesis of human 15-lipoxygenase, despite the low amino acid sequence identity between the soybean and mammalian enzymes. Both a positively charged amino acid residue (Arg402) and an aromatic amino acid residue (Phe414) are identified as critical for the binding of fatty acid substrates in human 15-lipoxygenase. Thus, binding determinants shown to be characteristic of non-enzymatic fatty acid-binding proteins are now implicated in the substrate binding pocket of lipoxygenases.


Chemical Biology & Drug Design | 2009

Structural insights for design of potent spleen tyrosine kinase inhibitors from crystallographic analysis of three inhibitor complexes.

Armando G. Villaseñor; Rama K. Kondru; Hoangdung Ho; Sandra Wang; Eva Papp; David Shaw; Jim W. Barnett; Michelle F. Browner; Andreas Kuglstatter

Spleen tyrosine kinase is considered an attractive drug target for the treatment of allergic and antibody mediated autoimmune diseases. We have determined the co‐crystal structures of spleen tyrosine kinase complexed with three known inhibitors: YM193306, a 7‐azaindole derivative and R406. The cis‐cyclohexyldiamino moiety of YM193306 is forming four hydrophobically shielded polar interactions with the spleen tyrosine kinase protein and is therefore crucial for the high potency of this inhibitor. Its primary amino group is inducing a conformational change of the spleen tyrosine kinase DFG Asp side chain. The crystal structure of the 7‐azaindole derivative bound to spleen tyrosine kinase is the first demonstration of a 2‐substituted 7‐azaindole bound to a protein kinase. Its indole‐amide substituent is tightly packed between the N‐ and C‐terminal kinase lobes. The co‐crystal structure of the spleen tyrosine kinase–R406 complex shows two main differences to the previously reported structure of spleen tyrosine kinase soaked with R406: (i) the side chain of the highly conserved Lys is disordered and not forming a hydrogen bond to R406 and (ii) the DFG Asp side chain is pointing away from and not towards R406. The novel protein–ligand interactions and protein conformational changes revealed in these structures guide the rational design and structure‐based optimization of second‐generation spleen tyrosine kinase inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2008

Fragment-based discovery of hepatitis C virus NS5b RNA polymerase inhibitors.

Stephen Suresh Antonysamy; Brandon E. Aubol; Jeff Blaney; Michelle F. Browner; Anthony M. Giannetti; Seth F. Harris; Normand Hebert; Jorg Hendle; Stephanie Hopkins; Elizabeth A. Jefferson; C. R. Kissinger; Vincent Leveque; David Marciano; Ethel McGee; Isabel Najera; Brian Nolan; Masaki Tomimoto; Eduardo Torres; Tobi Wright

Non-nucleoside inhibitors of HCV NS5b RNA polymerase were discovered by a fragment-based lead discovery approach, beginning with crystallographic fragment screening. The NS5b binding affinity and biochemical activity of fragment hits and inhibitors was determined by surface plasmon resonance (Biacore) and an enzyme inhibition assay, respectively. Crystallographic fragment screening hits with approximately 1-10mM binding affinity (K(D)) were iteratively optimized to give leads with approximately 200nM biochemical activity and low microM cellular activity in a Replicon assay.


Journal of Immunology | 2007

Cutting Edge: IL-1 Receptor-Associated Kinase 4 Structures Reveal Novel Features and Multiple Conformations

Andreas Kuglstatter; Armando G. Villaseñor; David Shaw; Simon W. Lee; Stan Tsing; Linghao Niu; Kyung W. Song; Jim W. Barnett; Michelle F. Browner

IL-1R-associated kinase (IRAK)4 plays a central role in innate and adaptive immunity, and is a crucial component in IL-1/TLR signaling. We have determined the crystal structures of the apo and ligand-bound forms of human IRAK4 kinase domain. These structures reveal several features that provide opportunities for the design of selective IRAK4 inhibitors. The N-terminal lobe of the IRAK4 kinase domain is structurally distinctive due to a loop insertion after an extended N-terminal helix. The gatekeeper residue is a tyrosine, a unique feature of the IRAK family. The IRAK4 structures also provide insights into the regulation of its activity. In the apo structure, two conformations coexist, differing in the relative orientation of the two kinase lobes and the position of helix C. In the presence of an ATP analog only one conformation is observed, indicating that this is the active conformation.


Protein Science | 2011

Insights into the conformational flexibility of Bruton's tyrosine kinase from multiple ligand complex structures.

Andreas Kuglstatter; A Wong; Stan Tsing; Simon W. Lee; Y Lou; Armando G. Villaseñor; J.M Bradshaw; David Shaw; Jim W. Barnett; Michelle F. Browner

Brutons tyrosine kinase (BTK) plays a key role in B cell receptor signaling and is considered a promising drug target for lymphoma and inflammatory diseases. We have determined the X‐ray crystal structures of BTK kinase domain in complex with six inhibitors from distinct chemical classes. Five different BTK protein conformations are stabilized by the bound inhibitors, providing insights into the structural flexibility of the Gly‐rich loop, helix C, the DFG sequence, and activation loop. The conformational changes occur independent of activation loop phosphorylation and do not correlate with the structurally unchanged WEI motif in the Src homology 2‐kinase domain linker. Two novel activation loop conformations and an atypical DFG conformation are observed representing unique inactive states of BTK. Two regions within the activation loop are shown to structurally transform between 310‐ and α‐helices, one of which collapses into the adenosine‐5′‐triphosphate binding pocket. The first crystal structure of a Tec kinase family member in the pharmacologically important DFG‐out conformation and bound to a type II kinase inhibitor is described. The different protein conformations observed provide insights into the structural flexibility of BTK, the molecular basis of its regulation, and the structure‐based design of specific inhibitors.


Bioorganic & Medicinal Chemistry Letters | 1996

Design, synthesis, activity, and structure of a novel class of matrix metalloproteinase inhibitors containing a heterocyclic P2′-P3′ amide bond isostere ☆

Jian Jeffrey Chen; Yiping Zhang; Scott Hammond; Nolan James Dewdney; Teresa Ho; Xiaohong Lin; Michelle F. Browner; Arlindo L. Castelhano

Abstract A novel series of hydrozamate-based inhibitors of matrix metalloproteinases containing benzimidazole and imidazole heterocyles as amide bond isosteres have been prepared. Potent inhibition (in the low nanomolar range) and selectivity (> 100-fold) can be attained with inhibitors containing only one amide bond. X-ray crystal structures of matrilysin (MMP-7) with two different inhibitors bound confirm that imidazole is an excellent amide bond isostere.


Journal of Molecular Biology | 2008

The crystal structure of JNK2 reveals conformational flexibility in the MAP kinase insert and indicates its involvement in the regulation of catalytic activity.

David Shaw; Sandra Wang; Armando G. Villaseñor; Stan Tsing; David Walter; Michelle F. Browner; Jim W. Barnett; Andreas Kuglstatter

c-Jun N-terminal kinase (JNK) 2 is a member of the mitogen-activated protein (MAP) kinase group of signaling proteins. MAP kinases share a common sequence insertion called MAP kinase insert, which, for ERK2, has been shown to interact with regulatory proteins and, for p38alpha, has been proposed to be involved in the regulation of catalytic activity. We have determined the crystal structure of human JNK2 complexed with an indazole inhibitor by applying a high-throughput protein engineering and surface-site mutagenesis approach. A novel conformation of the activation loop is observed, which is not compatible with its phosphorylation by upstream kinases. This activation inhibitory conformation of JNK2 is stabilized by the MAP kinase insert that interacts with the activation loop in an induced-fit manner. We therefore suggest that the MAP kinase insert of JNK2 plays a role in the regulation of JNK2 activation, possibly by interacting with intracellular binding partners.


Bioorganic & Medicinal Chemistry Letters | 2010

X-ray crystal structure of JNK2 complexed with the p38α inhibitor BIRB796: Insights into the rational design of DFG-out binding MAP kinase inhibitors

Andreas Kuglstatter; Manjiri Ghate; Stan Tsing; Armando G. Villaseñor; David Shaw; Jim W. Barnett; Michelle F. Browner

JNK2 and p38alpha are closely related mitogen-activated protein kinases that regulate various cellular activities and are considered drug targets for inflammatory diseases. We have determined the X-ray crystal structure of the clinical phase II p38alpha inhibitor BIRB796 bound to its off-target JNK2. This shows for the first time a JNK subfamily member in the DFG-out conformation. The fully resolved activation loop reveals that BIRB796 inhibits JNK2 activation by stabilizing the loop in a position that does not allow its phosphorylation by upstream kinases. The structure suggests that substituents at the BIRB796 morpholino group and modifications of the t-butyl moiety should further increase the p38alpha to JNK2 potency ratio. For the design of selective DFG-out binding JNK2 inhibitors, the binding pocket of the BIRB796 tolyl group may have the best potential.

Collaboration


Dive into the Michelle F. Browner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge