Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel McIntosh is active.

Publication


Featured researches published by Joel McIntosh.


Journal of Medicinal Chemistry | 2014

Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2–p53 Inhibitor in Clinical Development

Daqing Sun; Zhihong Li; Yosup Rew; Michael W. Gribble; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; Xiaoqi Chen; David Chow; Jeffrey Deignan; Jason Duquette; John Eksterowicz; Benjamin Fisher; Brian M. Fox; Jiasheng Fu; Ana Z. Gonzalez; Felix Gonzalez-Lopez de Turiso; Jonathan B. Houze; Xin Huang; Min Jiang; Lixia Jin; Frank Kayser; Jiwen Liu; Mei-Chu Lo; Alexander M. Long; Brian Lucas; Lawrence R. McGee; Joel McIntosh; Jeff Mihalic

We recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone which gave rise to substantial improvements in biochemical and cellular potency. Further investigation produced AMG 232 (2), which is currently being evaluated in human clinical trials for the treatment of cancer. Compound 2 is an extremely potent MDM2 inhibitor (SPR KD = 0.045 nM, SJSA-1 EdU IC50 = 9.1 nM), with remarkable pharmacokinetic properties and in vivo antitumor activity in the SJSA-1 osteosarcoma xenograft model (ED50 = 9.1 mg/kg).


Journal of Medicinal Chemistry | 2015

Structure-Based Drug Design of RN486, a Potent and Selective Bruton's Tyrosine Kinase (BTK) Inhibitor, for the Treatment of Rheumatoid Arthritis.

Yan Lou; Xiaochun Han; Andreas Kuglstatter; Rama K. Kondru; Zachary Kevin Sweeney; Michael Soth; Joel McIntosh; Renee Litman; Judy M. Suh; Buelent Kocer; Dana E. Davis; Jaehyeon Park; Sandra Frauchiger; Nolan James Dewdney; Hasim Zecic; Joshua Paul Gergely Taygerly; Keshab Sarma; Junbae Hong; Ronald J. Hill; Tobias Gabriel; David Michael Goldstein; Timothy D. Owens

Structure-based drug design was used to guide the optimization of a series of selective BTK inhibitors as potential treatments for Rheumatoid arthritis. Highlights include the introduction of a benzyl alcohol group and a fluorine substitution, each of which resulted in over 10-fold increase in activity. Concurrent optimization of drug-like properties led to compound 1 (RN486) ( J. Pharmacol. Exp. Ther. 2012 , 341 , 90 ), which was selected for advanced preclinical characterization based on its favorable properties.


Journal of Medicinal Chemistry | 2014

Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction.

Ana Z. Gonzalez; John Eksterowicz; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jason Duquette; Brian M. Fox; Jiasheng Fu; Xin Huang; Jonathan B. Houze; Lixia Jin; Yihong Li; Zhihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Dustin L. McMinn; Jonathan D. Oliner; Tao Osgood; Yosup Rew; Anne Y. Saiki; Paul Shaffer; Sarah Wortman; Peter Yakowec; Xuelei Yan; Qiuping Ye

We previously reported the discovery of AMG 232, a highly potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Our continued search for potent and diverse analogues led to the discovery of novel morpholinone MDM2 inhibitors. This change to a morpholinone core has a significant impact on both potency and metabolic stability compared to the piperidinone series. Within this morpholinone series, AM-8735 emerged as an inhibitor with remarkable biochemical potency (HTRF IC50 = 0.4 nM) and cellular potency (SJSA-1 EdU IC50 = 25 nM), as well as pharmacokinetic properties. Compound 4 also shows excellent antitumor activity in the SJSA-1 osteosarcoma xenograft model with an ED50 of 41 mg/kg. Lead optimization toward the discovery of this inhibitor as well as key differences between the morpholinone and the piperidinone series will be described herein.


Journal of Medicinal Chemistry | 2014

Novel Inhibitors of the MDM2-p53 Interaction Featuring Hydrogen Bond Acceptors as Carboxylic Acid Isosteres.

Ana Z. Gonzalez; Zhihong Li; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jason Duquette; John Eksterowicz; Brian M. Fox; Jiasheng Fu; Xin Huang; Jonathan B. Houze; Lixia Jin; Yihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Jonathan D. Oliner; Tao Osgood; Yosup Rew; Anne Y. Saiki; Paul Shaffer; Sarah Wortman; Peter Yakowec; Xuelei Yan; Qiuping Ye; Dongyin Yu; Xiaoning Zhao

We previously reported the discovery of potent and selective morpholinone and piperidinone inhibitors of the MDM2-p53 interaction. These inhibitors have in common a carboxylic acid moiety that engages in an electrostatic interaction with MDM2-His96. Our continued search for potent and diverse inhibitors led to the discovery of novel replacements for these acids uncovering new interactions with the MDM2 protein. In particular, using pyridine or thiazole as isosteres of the carboxylic acid moiety resulted in very potent analogues. From these, AM-6761 (4) emerged as a potent inhibitor with remarkable biochemical (HTRF IC50 = 0.1 nM) and cellular potency (SJSA-1 EdU IC50 = 16 nM), as well as favorable pharmacokinetic properties. Compound 4 also shows excellent antitumor activity in the SJSA-1 osteosarcoma xenograft model with an ED50 of 11 mg/kg. Optimization efforts toward the discovery of these inhibitors as well as the new interactions observed with the MDM2 protein are described herein.


Journal of Medicinal Chemistry | 2011

Discovery of 6-(2,4-Difluorophenoxy)-2-[3-hydroxy-1-(2-hydroxyethyl)propylamino]-8-methyl-8H-pyrido[2,3-d]pyrimidin-7-one (Pamapimod) and 6-(2,4-Difluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (R1487) as Orally Bioavailable and Highly Selective Inhibitors of p38α Mitogen-Activated Protein Kinase

David Michael Goldstein; Michael Soth; Tobias Gabriel; Nolan James Dewdney; Andreas Kuglstatter; Humberto Bartolome Arzeno; Jeffrey Jian Chen; William Bingenheimer; Stacie A. Dalrymple; James S. Dunn; Robert L. Farrell; Sandra Frauchiger; JoAnn La Fargue; Manjiri Ghate; Bradford Graves; Ronald J. Hill; Fujun Li; Renee Litman; Brad Loe; Joel McIntosh; Daniel McWeeney; Eva Papp; Jaehyeon Park; Harlan F. Reese; Richard T. Roberts; David Mark Rotstein; Bong San Pablo; Keshab Sarma; Martin Stahl; Man-Ling Sung

The development of a new series of p38α inhibitors resulted in the identification of two clinical candidates, one of which was advanced into a phase 2 clinical study for rheumatoid arthritis. The original lead, an lck inhibitor that also potently inhibited p38α, was a screening hit from our kinase inhibitor library. This manuscript describes the optimization of the lead to p38-selective examples with good pharmacokinetic properties.


Bioorganic & Medicinal Chemistry Letters | 2011

3-Amino-pyrazolo[3,4-d]pyrimidines as p38α kinase inhibitors: Design and development to a highly selective lead

Michael Soth; Sarah C. Abbot; Allassan Abubakari; Nidhi Arora; Humberto Bartolome Arzeno; Roland Joseph Billedeau; Nolan James Dewdney; Kieran Durkin; Sandra Frauchiger; Manjiri Ghate; David Michael Goldstein; Ronald J. Hill; Andreas Kuglstatter; Fujun Li; Brad Loe; Kristen Lynn Mccaleb; Joel McIntosh; Eva Papp; Jaehyeon Park; Martin Stahl; Man-Ling Sung; Rebecca T. Suttman; David C. Swinney; Paul Weller; Brian Wong; Hasim Zecic; Tobias Gabriel

Learnings from previous Roche p38-selective inhibitors were applied to a new fragment hit, which was optimized to a potent, exquisitely selective preclinical lead with a good pharmacokinetic profile.


Bioorganic & Medicinal Chemistry Letters | 2015

Finding the perfect spot for fluorine: improving potency up to 40-fold during a rational fluorine scan of a Bruton's Tyrosine Kinase (BTK) inhibitor scaffold.

Yan Lou; Zachary Kevin Sweeney; Andreas Kuglstatter; Dana Davis; David Michael Goldstein; Xiaochun Han; Junbae Hong; Buelent Kocer; Rama K. Kondru; Renee Litman; Joel McIntosh; Keshab Sarma; Judy M. Suh; Joshua Paul Gergely Taygerly; Timothy D. Owens

A rational fluorine scan based on co-crystal structures was explored to increase the potency of a series of selective BTK inhibitors. While fluorine substitution on a saturated bicyclic ring system yields no apparent benefit, the same operation on an unsaturated bicyclic ring can increase HWB activity by up to 40-fold. Comparison of co-crystal structures of parent molecules and fluorinated counterparts revealed the importance of placing fluorine at the optimal position to achieve favorable interactions with protein side chains.


Tetrahedron Letters | 1994

SNAr reactions of benzaldimines: A concise synthesis of substituted phenanthridines☆

Deborah Carol Reuter; Lee A. Flippin; Joel McIntosh; Joan M. Caroon; Jeff Hammaker

Abstract Halogenated benzaldimines react with dilithiated N-Boc-aniline derivatives to yield biaryl imines via a SNAr reaction. Mild hydrolysis of this imine then allows cyclization to the substituted phenanthridine. Extension of this reaction to a variety of N-Boc-anilines and imines was explored.


Journal of Medicinal Chemistry | 2014

Discovery of AM-7209, a Potent and Selective 4-Amidobenzoic Acid Inhibitor of the MDM2-p53 Interaction.

Yosup Rew; Daqing Sun; Xuelei Yan; Hilary P. Beck; Jude Canon; Ada Chen; Jason Duquette; John Eksterowicz; Brian M. Fox; Jiasheng Fu; Ana Z. Gonzalez; Jonathan B. Houze; Xin Huang; Min Jiang; Lixia Jin; Yihong Li; Zhihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Jonathan D. Oliner; Tao Osgood; Anne Y. Saiki; Paul Shaffer; Yu Chung Wang; Sarah Wortman; Peter Yakowec; Qiuping Ye

Structure-based rational design and extensive structure-activity relationship studies led to the discovery of AMG 232 (1), a potent piperidinone inhibitor of the MDM2-p53 association, which is currently being evaluated in human clinical trials for the treatment of cancer. Further modifications of 1, including replacing the carboxylic acid with a 4-amidobenzoic acid, afforded AM-7209 (25), featuring improved potency (KD from ITC competition was 38 pM, SJSA-1 EdU IC50 = 1.6 nM), remarkable pharmacokinetic properties, and in vivo antitumor activity in both the SJSA-1 osteosarcoma xenograft model (ED50 = 2.6 mg/kg QD) and the HCT-116 colorectal carcinoma xenograft model (ED50 = 10 mg/kg QD). In addition, 25 possesses distinct mechanisms of elimination compared to 1.


Journal of Medicinal Chemistry | 2014

Discovery of N-[4-[6-tert-Butyl-5-methoxy-8-(6-methoxy-2-oxo-1H-pyridin-3-yl)-3-quinolyl]phenyl]methanesulfonamide (RG7109), a Potent Inhibitor of the Hepatitis C Virus NS5B Polymerase

Francisco Xavier Talamas; Sarah C. Abbot; Shalini Anand; Ken A. Brameld; David S. Carter; Jun Chen; Dana E. Davis; Javier de Vicente; Amy Fung; Leyi Gong; Seth F. Harris; Petra Inbar; Sharada Shenvi Labadie; Eun Kyoung Lee; Remy Lemoine; Sophie Le Pogam; Vincent Leveque; Jim Li; Joel McIntosh; Isabel Najera; Jaehyeon Park; Aruna Railkar; Sonal Rajyaguru; Michael Sangi; Ryan Craig Schoenfeld; Leanna R. Staben; Yun-Chou Tan; Joshua Paul Gergely Taygerly; Armando G. Villaseñor; Paul Weller

In the past few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAAs). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. In continuation of our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic headgroups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109), which was selected for advancement to clinical development.

Collaboration


Dive into the Joel McIntosh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge