Michelle H. Wong
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michelle H. Wong.
Molecular Microbiology | 2005
Çagla Tükel; Manuela Raffatellu; Andrea D. Humphries; R. Paul Wilson; Helene Andrews-Polymenis; Tamara Gull; Josely F. Figueiredo; Michelle H. Wong; Kathrin S. Michelsen; Mustafa Akçelik; L. Garry Adams; Andreas J. Bäumler
Knowledge about the origin and identity of the microbial products recognized by the innate immune system is important for understanding the pathogenesis of inflammatory diseases. We investigated the potential role of Salmonella enterica serotype Typhimurium fimbriae as pathogen‐associated molecular patterns (PAMPs) that may stimulate innate pathways of inflammation. We screened a panel of 11 mutants, each carrying a deletion of a different fimbrial operon, for their enteropathogenicity using the calf model of human gastroenteritis. One mutant (csgBA) was attenuated in its ability to elicit fluid accumulation and GROα mRNA expression in bovine ligated ileal loops. The mechanism by which thin curled fimbriae encoded by the csg genes contribute to inflammation was further investigated using tissue culture. The S. Typhimurium csgBA mutant induced significantly less IL‐8 production than the wild type in human macrophage‐like cells. Purified thin curled fimbriae induced IL‐8 expression in human embryonic kidney (HEK293) cells transfected with Toll‐like receptor (TLR) 2/CD14 but not in cells transfected with TLR5, TLR4/MD2/CD14 or TLR11. Fusion proteins between the major fimbrial subunit of thin curled fimbriae (CsgA) and glutathione‐S‐transferase (GST) elicited IL‐8 production in HEK293 cells transfected with TLR2/CD14. Proteinase K treatment abrogated IL‐8 production elicited in these cells by GST–CsgA, but not by synthetic lipoprotein. GST–CsgA elicited more IL‐6 production than GST in bone marrow‐derived macrophages from TLR2+/+ mice, while there was no difference in IL‐6 secretion between GST–CsgA and GST in macrophages from TLR2–/– mice. These data suggested that CsgA is a PAMP that is recognized by TLR2.
Journal of Immunology | 2008
Yoshikazu Naiki; Rosalinda Sorrentino; Michelle H. Wong; Kathrin S. Michelsen; Kenichi Shimada; Shuang Chen; Atilla Yilmaz; Anatoly Slepenkin; Nicolas W. J. Schröder; Timothy R. Crother; Yonca Bulut; Terence M. Doherty; Michelle N. Bradley; Zory Shaposhnik; Ellena M. Peterson; Peter Tontonoz; Prediman K. Shah; Moshe Arditi
Experimental and clinical studies link Chlamydia pneumoniae infection to atherogenesis and atherothrombotic events, but the underlying mechanisms are unclear. We tested the hypothesis that C. pneumoniae-induced acceleration of atherosclerosis in apolipoprotein E (ApoE)−/− mice is reciprocally modulated by activation of TLR-mediated innate immune and liver X receptor α (LXRα) signaling pathways. We infected ApoE−/− mice and ApoE−/− mice that also lacked TLR2, TLR4, MyD88, or LXRα intranasally with C. pneumoniae followed by feeding of a high fat diet for 4 mo. Mock-infected littermates served as controls. Atherosclerosis was assessed in aortic sinuses and in en face preparation of whole aorta. The numbers of activated dendritic cells (DCs) within plaques and the serum levels of cholesterol and proinflammatory cytokines were also measured. C. pneumoniae infection markedly accelerated atherosclerosis in ApoE-deficient mice that was associated with increased numbers of activated DCs in aortic sinus plaques and higher circulating levels of MCP-1, IL-12p40, IL-6, and TNF-α. In contrast, C. pneumoniae infection had only a minimal effect on atherosclerosis, accumulation of activated DCs in the sinus plaques, or circulating cytokine increases in ApoE−/− mice that were also deficient in TLR2, TLR4, or MyD88. However, C. pneumoniae-induced acceleration of atherosclerosis in ApoE−/− mice was further enhanced in ApoE−/−LXRα−/− double knockout mice and was accompanied by higher serum levels of IL-6 and TNF-α. We conclude that C. pneumoniae infection accelerates atherosclerosis in hypercholesterolemic mice predominantly through a TLR/MyD88-dependent mechanism and that LXRα appears to reciprocally modulate and reduce the proatherogenic effects of C. pneumoniae infection.
PLOS ONE | 2010
Emily L. Lowe; Timothy R. Crother; Shervin Rabizadeh; Bing Hu; Hanlin Wang; Shuang Chen; Kenichi Shimada; Michelle H. Wong; Kathrin S. Michelsen; Moshe Arditi
Inflammatory bowel disease (IBD) is a disorder of chronic inflammation with increased susceptibility to colorectal cancer. The etiology of IBD is unclear but thought to result from a dysregulated adaptive and innate immune response to microbial products in a genetically susceptible host. Toll-like receptor (TLR) signaling induced by intestinal commensal bacteria plays a crucial role in maintaining intestinal homeostasis, innate immunity and the enhancement of intestinal epithelial cell (IEC) integrity. However, the role of TLR2 in the development of colorectal cancer has not been studied. We utilized the AOM-DSS model for colitis-associated colorectal cancer (CAC) in wild type (WT) and TLR2−/− mice. Colons harvested from WT and TLR2−/− mice were used for histopathology, immunohistochemistry, immunofluorescence and cytokine analysis. Mice deficient in TLR2 developed significantly more and larger colorectal tumors than their WT controls. We provide evidence that colonic epithelium of TLR2−/− mice have altered immune responses and dysregulated proliferation under steady-state conditions and during colitis, which lead to inflammatory growth signals and predisposition to accelerated neoplastic growth. At the earliest time-points assessed, TLR2−/− colons exhibited a significant increase in aberrant crypt foci (ACF), resulting in tumors that developed earlier and grew larger. In addition, the intestinal microenvironment revealed significantly higher levels of IL-6 and IL-17A concomitant with increased phospho-STAT3 within ACF. These observations indicate that in colitis, TLR2 plays a protective role against the development of CAC.
Journal of Biological Chemistry | 2005
Yoshikazu Naiki; Kathrin S. Michelsen; Nicolas W. J. Schröder; Randa Alsabeh; Anatoly Slepenkin; Wenxuan Zhang; Shuang Chen; Bo Wei; Yonca Bulut; Michelle H. Wong; Ellena M. Peterson; Moshe Arditi
Chlamydia pneumoniae is the causative agent of respiratory tract infections and a number of chronic diseases. Here we investigated the involvement of the common TLR adaptor molecule MyD88 in host responses to C. pneumoniae-induced pneumonia in mice. MyD88-deficient mice were severely impaired in their ability to mount an acute early inflammatory response toward C. pneumoniae. Although the bacterial burden in the lungs was comparable 5 days after infection, MyD88-deficient mice exhibited only minor signs of pneumonia and reduced expression of inflammatory mediators. MyD88-deficient mice were unable to up-regulate proinflammatory cytokines and chemokines, demonstrated delayed recruitment of CD8+ and CD4+ T cells to the lungs, and were unable to clear the pathogen from their lungs at day 14. At day 14 the MyD88-deficent mice developed a severe, chronic lung inflammation with elevated IL-1β and IFN-γ leading to increased mortality, whereas wild-type mice as well as TLR2- or TLR4-deficient mice recovered from acute pneumonia and did not show delayed bacterial clearance. Thus, MyD88 is essential to recognize C. pneumoniae infection and initiate a prompt and effective immune host response against this organism leading to clearance of bacteria from infected lungs.
PLOS ONE | 2011
David Q. Shih; Robert Barrett; Xiaolan Zhang; Nicole Yeager; Hon Wai Koon; Piangwarin Phaosawasdi; Yahui Song; Brian Ko; Michelle H. Wong; Kathrin S. Michelsen; Gislaine Martins; Charalabos Pothoulakis; Stephan R. Targan
TL1A is a member of the TNF superfamily and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, a subset of Crohns disease (CD) patients with the risk TL1A haplotype is associated with elevated TL1A expression and a more severe disease course. To investigate the in vivo role of elevated TL1A expression, we generated two transgenic (Tg) murine models with constitutive Tl1a expression in either lymphoid or myeloid cells. Compared to wildtype (WT) mice, constitutive expression of Tl1a in either lymphoid or myeloid cells showed mild patchy inflammation in the small intestine, which was more prominent in the ileum. In addition, mice with constitutive Tl1a expression exhibited enhanced intestinal and colonic fibrosis compared to WT littermates. The percentage of T cells expressing the gut homing chemokine receptors CCR9 and CCR10 was higher in the Tl1a Tg mice compared to WT littermates. Sustained expression of Tl1A in T cells also lead to increased Foxp3+ Treg cells. T cells or antigen presenting cells (APC) with constitutive expression of Tl1a were found to have a more activated phenotype and mucosal mononuclear cells exhibit enhanced Th1 cytokine activity. These results indicated an important role of TL1A in mucosal T cells and APC function and showed that up-regulation of TL1A expression can promote mucosal inflammation and gut fibrosis.
Circulation | 2005
Margalit E. Rosenkranz; Danica J. Schulte; Lucila M. A. Agle; Michelle H. Wong; Wenxuan Zhang; Lionel B. Ivashkiv; Terence M. Doherty; Michael C. Fishbein; Thomas J. A. Lehman; Kathrin S. Michelsen; Moshe Arditi
Background— Kawasaki disease is the most common cause of acquired cardiac disease and acute vasculitis in children, targets the coronary arteries, and can occasionally be fatal. The pathogenesis and the molecular mechanisms remain unknown. After injection of Lactobacillus casei cell-wall extract (LCCWE), mice develop a focal coronary arteritis that histopathologically resembles Kawasaki disease, but the mechanism remains unclear. Here, we tested the hypothesis that signaling by Toll-like receptors (TLRs) through their key downstream adaptor molecule myeloid differentiation factor 88 (MyD88) is required for the cellular activation and coronary arteritis produced by LCCWE. Methods and Results— Bone marrow–derived macrophages from TLR2- or MyD88-deficient mice were unresponsive to LCCWE-induced stimulation. In contrast, macrophages obtained from TLR4-deficient mice produced the same amount of interleukin-6 as macrophages from wild-type mice after stimulation with LCCWE. Intraperitoneal injection of LCCWE produced severe focal coronary arteritis in TLR4−/− and C57BL/6 control mice but not in TLR2−/− or MyD88−/− mice. Collectively, these results indicate that LCCWE is a potent inducer of nuclear factor-&kgr;B via TLR2 but not TLR4 and that this activation proceeds via the MyD88-dependent signaling pathway. In vivo studies suggest that TLR2−/− mice are protected from LCCWE-induced coronary arteritis and that this protection is mediated through the adaptor molecule MyD88. Conclusions— Our results provide important insights into the molecular signaling in this mouse model of coronary arteritis. We show here that LCCWE-induced coronary arteritis is dependent on intact TLR2 and MyD88 signaling.
Journal of Immunology | 2009
Danica J. Schulte; Atilla Yilmaz; Kenichi Shimada; Michael C. Fishbein; Emily L. Lowe; Shuang Chen; Michelle H. Wong; Terence M. Doherty; Thomas J. A. Lehman; Timothy R. Crother; Rosalinda Sorrentino; Moshe Arditi
Kawasaki disease (KD) is the most common cause of acquired cardiac disease and acute vasculitis in children in the developed world. Injection of a cell wall extract isolated from Lactobacillus casei (LCCWE) into mice causes a focal coronary arteritis that histopathologically mimics the coronary lesions observed in KD patients. In this study we used this model to investigate the participation of T cells, B cells, and dendritic cells (DC) in the development of coronary arteritis. RAG1−/−, B cellnull, and wild-type (WT) mice were injected with a single dose of LCCWE (500 μg/mouse i.p.). None of the RAG1−/− mice developed coronary arteritis, whereas 70% of WT and 100% of B cellnull mice developed coronary lesions, indicating that T cells were required for lesion formation. When splenocytes isolated from LCCWE-treated mice were restimulated with LCCWE, we observed significant IFN-γ secretion in WT but not in RAG1−/− mice. Immunohistochemical staining showed F4/80+ macrophages, activated MIDC-8+ myeloid DCs (mDC), plasmacytoid DCs, and colocalization of CD3+ T cells with mDCs in coronary artery lesions, suggesting an Ag-driven process. T cells but not B cells are required for LCCWE-induced coronary arteritis. Similar to human lesions, the coronary lesions contain macrophages, activated mDCs, and plaslmacytoid DCs all in close proximity to T cells, further strengthening the relevance of this mouse model to the immunopathology of coronary disease in KD. These studies are consistent with the interpretation that macrophages and DCs may collaborate with T cells in the pathological mechanisms of coronary arteritis.
The Journal of Allergy and Clinical Immunology | 2008
Nicolas W. J. Schröder; Timothy R. Crother; Yoshikazu Naiki; Shuang Chen; Michelle H. Wong; Atilla Yilmaz; Anatoly Slepenkin; Danica J. Schulte; Randa Alsabeh; Terence M. Doherty; Ellena M. Peterson; Andre E. Nel; Moshe Arditi
BACKGROUND The original hygiene hypothesis predicts that infections should protect against asthma but does not account for increasing evidence that certain infections might also promote asthma development. A mechanistic reconciliation of these findings has not yet emerged. In particular, the role of innate immunity in this context is unclear. OBJECTIVE We sought to test whether bacterial respiratory tract infection causes airway sensitization toward an antigen encountered in parallel and to elucidate the contribution of innate immune responses. METHODS Mice were infected with different doses of Chlamydia pneumoniae, followed by exposure to human serum albumin (HSA) and challenge with HSA 2 weeks later. Airway inflammation, immunoglobulins, and lymph node cytokines were assessed. Furthermore, adoptive transfer of dendritic cells (DCs) and depletion of regulatory T (Treg) cells was performed. RESULTS C pneumoniae-induced lung inflammation triggered sensitization toward HSA, resulting in eosinophilic airway inflammation after HSA challenge. Airway sensitization depended on the severity and timing of infection: low-dose infection and antigen exposure within 5 days of infection induced allergic sensitization, whereas high-dose infection or antigen exposure 10 days after infection did not. Temporal and dose-related effects reflected DC activation and could be reproduced by means of adoptive transfer of HSA-pulsed lung DCs from infected mice. MyD88 deficiency in DCs abolished antigen sensitization, and depletion of Treg cells prolonged the time window in which sensitization could occur. CONCLUSIONS We conclude that moderate, but not severe, pulmonary bacterial infection can induce allergic sensitization to inert inhaled antigens through a mechanism that requires MyD88-dependent DC activation and is controlled by Treg cells.
Infection and Immunity | 2009
Yonca Bulut; Kenichi Shimada; Michelle H. Wong; Shuang Chen; Pearl Gray; Randa Alsabeh; Terence M. Doherty; Timothy R. Crother; Moshe Arditi
ABSTRACT Heat shock protein 60 derived from Chlamydia pneumoniae (cHSP60) activates Toll-like receptor 4 (TLR4) signaling through the MyD88 pathway in vitro, but it is not known how cHSP60 contributes to C. pneumoniae-induced lung inflammation. We treated wild-type (WT), TLR2−/−, TLR4−/−, or MyD88−/− mice intratracheally (i.t.) with recombinant cHSP60 (50 μg), UV-killed C. pneumoniae (UVCP; 5 × 106 inclusion-forming units/mouse), lipopolysaccharide (2 μg), or phosphate-buffered saline (PBS) and sacrificed mice 24 h later. Bronchoalveolar lavage (BAL) was obtained to measure cell counts and cytokine levels, lungs were analyzed for histopathology, and lung homogenate chemokine concentrations were determined. Bone marrow-derived dendritic cells (BMDDCs) were generated and stimulated with live C. pneumoniae (multiplicity of infection [MOI], 5), UVCP (MOI, 5), or cHSP60 for 24 h, and the expression of costimulatory molecules (CD80 and CD86) was measured by fluorescence-activated cell sorting. cHSP60 induced acute lung inflammation with the same intensity as that of UVCP-induced inflammation in WT mice but not in TLR4−/− or MyD88−/− mice. cHSP60- and UVCP-induced lung inflammation was associated with increased numbers of cells in BAL, increased neutrophil recruitment, and elevated BAL interleukin-6 (IL-6) levels. Both cHSP60 and UVCP induced IL-6 release and CD80 and CD86 expression in WT cells but not in MyD88−/− BMDDCs. cHSP60 stimulated DC activation in a TLR4- and MyD88-dependent manner with an intensity similar to that induced by UVCP. These data suggest that cHSP60 promotes lung inflammation and DC activation via TLR4 and MyD88 and therefore may play a significant role in the pathogenesis of C. pneumoniae-induced chronic inflammatory lung diseases.
Journal of Endotoxin Research | 2007
Shuang Chen; Michelle H. Wong; Danica J. Schulte; Moshe Arditi; Kathrin S. Michelsen
Toll-like receptors (TLRs) initiate and maintain host defenses and inflammation, and directly contribute to diseases such as atherosclerosis. It is not completely understood in what cell types proatherogenic TLR-induced signaling arises and, particularly, there is uncertainty regarding the potential functional role of TLR2 in endothelial cells (ECs). We determined TLR2 and TLR4 gene expression in four different human and two different murine primary ECs using gene array analysis, RT-PCR, and flow cytometry and confirmed these data by functional studies by stimulating ECs with the corresponding TLR ligands. TLR4 was expressed in all human and murine ECs and these cells responded to stimulation with LPS. Faint expression of TLR2 was observed in human ECs, whereas murine ECs express considerable amounts of TLR2 mRNA. Human ECs failed to respond to TLR2 ligands while murine ECs responded to TLR2 ligands. Furthermore, in murine ECs, TLR2 was located on the cell surface while in human ECs, TLR2 was sequestered in intracellular compartments. After IFN-γ or IL-1β stimulation, TLR2 translocated to the cell surface of human ECs. In conclusion, TLR2 is expressed intracellularly in human ECs and, therefore, TLR2 ligands are inaccessible to the receptor. Murine ECs express membrane TLR2 and respond to TLR2 ligands, but human ECs normally will not respond unless they are first primed with inflammatory stimulation, which appears to trigger translocation of TLR2 to the cell surface.