Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle L. Krishnan is active.

Publication


Featured researches published by Michelle L. Krishnan.


Pediatrics | 2007

Relationship Between White Matter Apparent Diffusion Coefficients in Preterm Infants at Term-Equivalent Age and Developmental Outcome at 2 Years

Michelle L. Krishnan; Leigh Dyet; James P. Boardman; Olga Kapellou; Joanna M. Allsop; Frances Cowan; Ad Edwards; Mary A. Rutherford; Serena J. Counsell

OBJECTIVE. The aim of this study was to develop a simple reproducible method for the measurement of apparent diffusion coefficient values in the white matter of preterm infants using diffusion-weighted imaging to test the hypothesis that elevated mean apparent diffusion coefficient values are associated with lower developmental quotient scores at 2 years’ corrected age. METHODS. We obtained diffusion-weighted imaging in 38 preterm infants at term-equivalent age who had no evidence of overt cerebral pathology on conventional MRI. Mean apparent diffusion coefficient values at the level of the centrum semiovale were determined. The children were assessed using a standardized neurologic examination, and the Griffiths Mental Development Scales were administered to obtain a developmental quotient at 2 years’ corrected age. The relationship between mean apparent diffusion coefficient values and developmental quotient was examined. Clinical data relating to postnatal sepsis, antenatal steroid exposure, supplemental oxygen, gender, patent ductus arteriosus, and inotrope requirement were collected, and the mean apparent diffusion coefficient values for each group were compared. RESULTS. The mean (±SD) apparent diffusion coefficient value in the white matter was 1.385 ± 0.07 × 10−3 mm2/second, and the mean developmental quotient was 108.9 ± 11.5. None of the children had a significant neurologic problem. There was a significant negative correlation between mean apparent diffusion coefficient and developmental quotient. CONCLUSION. These findings suggest that higher white matter apparent diffusion coefficient values at term-equivalent age in preterm infants without overt lesions are associated with poorer developmental performance in later childhood. Consequently, apparent diffusion coefficient values at term may be of prognostic value for neurodevelopmental outcome in infants who are born preterm and who have no other imaging indicators of abnormality.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia.

Anna Hoerder-Suabedissen; Franziska Oeschger; Michelle L. Krishnan; T G Belgard; Wei-Zhi Wang; Sue J. Lee; C Webber; E Petretto; Anthony David Edwards; Zoltán Molnár

The subplate zone is a highly dynamic transient sector of the developing cerebral cortex that contains some of the earliest generated neurons and the first functional synapses of the cerebral cortex. Subplate cells have important functions in early establishment and maturation of thalamocortical connections, as well as in the development of inhibitory cortical circuits in sensory areas. So far no role has been identified for cells in the subplate in the mature brain and disease association of the subplate-specific genes has not been analyzed systematically. Here we present gene expression evidence for distinct roles of the mouse subplate across development as well as unique molecular markers to extend the repertoire of subplate labels. Performing systematic comparisons between different ages (embryonic days 15 and 18, postnatal day 8, and adult), we reveal the dynamic and constant features of the markers labeling subplate cells during embryonic and early postnatal development and in the adult. This can be visualized using the online database of subplate gene expression at https://molnar.dpag.ox.ac.uk/subplate/. We also identify embryonic similarities in gene expression between the ventricular zones, intermediate zone, and subplate, and distinct postnatal similarities between subplate, layer 5, and layers 2/3. The genes expressed in a subplate-specific manner at some point during development show a statistically significant enrichment for association with autism spectrum disorders and schizophrenia. Our report emphasizes the importance of the study of transient features of the developing brain to better understand neurodevelopmental disorders.


Nature Communications | 2015

Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus

Johnson; Jacques Behmoaras; Leonardo Bottolo; Michelle L. Krishnan; Katharina Pernhorst; Pl Santoscoy; T Rossetti; Doug Speed; Prashant K. Srivastava; Marc Chadeau-Hyam; Nabil Hajji; A Dabrowska; Maxime Rotival; B Razzaghi; S Kovac; K Wanisch; Fw Grillo; A Slaviero; Langley; Kirill Shkura; P Roncon; Tisham De; Manuel Mattheisen; Pitt Niehusmann; Terence J. O'Brien; Slavé Petrovski; M. von Lehe; Per Hoffmann; Johan G. Eriksson; Alison J. Coffey

Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo.


Experimental Neurology | 2006

Heat shock protein 27 rescues motor neurons following nerve injury and preserves muscle function

Paul S Sharp; Michelle L. Krishnan; Oliver Pullar; Roberto Navarrete; Dominic J. Wells; Jacqueline de Belleroche

Heat shock proteins (HSPs) are a family of ubiquitously expressed proteins that are up-regulated in response to a range of stresses and play an important role in cellular defence mechanisms. In previous studies, we demonstrated that overexpression of heat shock protein 27 (HSP27) in transgenic mice has significant cytoprotective properties in vivo, reducing caspase-3-mediated cell death in the hippocampus associated with limbic seizures and reducing infarct size in cardiac ischaemia. In motor neurons, HSP27 is also implicated as a survival promoting factor; however, it remains to be established whether HSP27 is able to exert long-term neuroprotective effects following neonatal nerve injury. We now show that, following neonatal nerve crush, HSP27 overexpression in vivo provides a substantial rescue of motor neurons 5-6 months following nerve injury. Furthermore, in vivo isometric tension recordings demonstrate that surviving motor neurons were able to regenerate, resulting in a 90% improvement (P < 0.0005) in motor unit number in HSP27 mice. Moreover, this increase in motor unit number was associated with improved muscle weight, muscle force, contractile speeds, and histochemical markers of muscle activity. These properties of HSP27 therefore have considerable potential for improving long-term muscle function in motor neuron disorders.


Pediatric Neurology | 2010

Diffusion Features of White Matter in Tuberous Sclerosis With Tractography

Michelle L. Krishnan; Olivier Commowick; Shafali S. Jeste; Neil I. Weisenfeld; Arne Hans; Matthew C. Gregas; Mustafa Sahin; Simon K. Warfield

Normal-appearing white matter has been shown via diffusion tensor imaging to be affected in tuberous sclerosis complex. Under the hypothesis that some systems might be differentially affected, including the visual pathways and systems of social cognition, diffusion properties of various regions of white matter were compared. For 10 patients and 6 age-matched control subjects, 3 T magnetic resonance imaging was assessed using diffusion tensor imaging obtained in 35 directions. Three-dimensional volumes corresponding to the geniculocalcarine tracts were extracted via tractography, and two-dimensional regions of interest were used to sample other regions. Regression analysis indicated lower fractional anisotropy in the splenium of corpus callosum and geniculocalcarine tracts in tuberous sclerosis complex group, as well as lower axial diffusivity in the internal capsule, superior temporal gyrus, and geniculocalcarine tracts. Mean and radial diffusivity of the splenium of corpus callosum were higher in the tuberous sclerosis complex group. The differences in diffusion properties of white matter between tuberous sclerosis complex patients and control subjects suggest disorganized and structurally compromised axons with poor myelination. The visual and social cognition systems appear to be differentially involved, which might in part explain the behavioral and cognitive characteristics of the tuberous sclerosis complex population.


Pediatric Neurology | 2010

Original ArticleDiffusion Features of White Matter in Tuberous Sclerosis With Tractography

Michelle L. Krishnan; Olivier Commowick; Shafali S. Jeste; Neil I. Weisenfeld; Arne Hans; Matthew C. Gregas; Mustafa Sahin; Simon K. Warfield

Normal-appearing white matter has been shown via diffusion tensor imaging to be affected in tuberous sclerosis complex. Under the hypothesis that some systems might be differentially affected, including the visual pathways and systems of social cognition, diffusion properties of various regions of white matter were compared. For 10 patients and 6 age-matched control subjects, 3 T magnetic resonance imaging was assessed using diffusion tensor imaging obtained in 35 directions. Three-dimensional volumes corresponding to the geniculocalcarine tracts were extracted via tractography, and two-dimensional regions of interest were used to sample other regions. Regression analysis indicated lower fractional anisotropy in the splenium of corpus callosum and geniculocalcarine tracts in tuberous sclerosis complex group, as well as lower axial diffusivity in the internal capsule, superior temporal gyrus, and geniculocalcarine tracts. Mean and radial diffusivity of the splenium of corpus callosum were higher in the tuberous sclerosis complex group. The differences in diffusion properties of white matter between tuberous sclerosis complex patients and control subjects suggest disorganized and structurally compromised axons with poor myelination. The visual and social cognition systems appear to be differentially involved, which might in part explain the behavioral and cognitive characteristics of the tuberous sclerosis complex population.


Pediatrics | 2014

Common genetic variants and risk of brain injury after preterm birth

James P. Boardman; Andrew Walley; Gareth Ball; Petros Takousis; Michelle L. Krishnan; Laurelle Hughes-Carre; Paul Aljabar; Ahmed Serag; Caroline King; Nazakat Merchant; Latha Srinivasan; Philippe Froguel; Jo Hajnal; Daniel Rueckert; Serena J. Counsell; A. David Edwards

BACKGROUND: The role of heritable factors in determining the common neurologic deficits seen after preterm birth is unknown, but the characteristic phenotype of neurocognitive, neuroanatomical, and growth abnormalities allows principled selection of candidate genes to test the hypothesis that common genetic variation modulates the risk for brain injury. METHODS: We collected an MRI-linked genomic DNA library from 83 preterm infants and genotyped tag single nucleotide polymorphisms in 13 relevant candidate genes. We used tract-based spatial statistics and deformation-based morphometry to examine the risks conferred by carriage of particular alleles at tag single nucleotide polymorphisms in a restricted number of genes and related these to the preterm cerebral endophenotype. RESULTS: Carriage of the minor allele at rs2518824 in the armadillo repeat gene deleted in velocardiofacial syndrome (ARVCF) gene, which has been linked to neuronal migration and schizophrenia, and rs174576 in the fatty acid desaturase 2 gene, which encodes a rate-limiting enzyme for endogenous long chain polyunsaturated fatty acid synthesis and has been linked to intelligence, was associated with white matter abnormality measured in vivo using diffusion tensor imaging (P = .0009 and P = .0019, respectively). CONCLUSIONS: These results suggest that genetic variants modulate white matter injury after preterm birth, and known susceptibilities to neurologic status in later life may be exposed by the stress of premature exposure to the extrauterine environment.


Nature Communications | 2017

Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants

Michelle L. Krishnan; Juliette Van Steenwinckel; Anne-Laure Schang; Jun Yan; Johanna Arnadottir; Tifenn Le Charpentier; Zsolt Csaba; Pascal Dournaud; Sara Cipriani; Constance Auvynet; Luigi Titomanlio; Julien Pansiot; Gareth Ball; James P. Boardman; Andrew Walley; Alka Saxena; Ghazala Mirza; Bobbi Fleiss; A. David Edwards; Enrico Petretto; Pierre Gressens

Preterm birth places infants in an adverse environment that leads to abnormal brain development and cerebral injury through a poorly understood mechanism known to involve neuroinflammation. In this study, we integrate human and mouse molecular and neuroimaging data to investigate the role of microglia in preterm white matter damage. Using a mouse model where encephalopathy of prematurity is induced by systemic interleukin-1β administration, we undertake gene network analysis of the microglial transcriptomic response to injury, extend this by analysis of protein-protein interactions, transcription factors and human brain gene expression, and translate findings to living infants using imaging genomics. We show that DLG4 (PSD95) protein is synthesised by microglia in immature mouse and human, developmentally regulated, and modulated by inflammation; DLG4 is a hub protein in the microglial inflammatory response; and genetic variation in DLG4 is associated with structural differences in the preterm infant brain. DLG4 is thus apparently involved in brain development and impacts inter-individual susceptibility to injury after preterm birth.Inflammation mediated by microglia plays a key role in brain injury associated with preterm birth, but little is known about the microglial response in preterm infants. Here, the authors integrate molecular and imaging data from animal models and preterm infants, and find that microglial expression of DLG4 plays a role.


Brain and behavior | 2016

Possible relationship between common genetic variation and white matter development in a pilot study of preterm infants.

Michelle L. Krishnan; Zi Wang; Matt Silver; James P. Boardman; Gareth Ball; Serena J. Counsell; Andrew Walley; Giovanni Montana; Anthony David Edwards

The consequences of preterm birth are a major public health concern with high rates of ensuing multisystem morbidity, and uncertain biological mechanisms. Common genetic variation may mediate vulnerability to the insult of prematurity and provide opportunities to predict and modify risk.


NeuroImage | 2016

Characterising brain network topologies: A dynamic analysis approach using heat kernels.

A.W. Chung; Markus Schirmer; Michelle L. Krishnan; Gareth Ball; Paul Aljabar; Alexander D. Edwards; Giovanni Montana

Network theory provides a principled abstraction of the human brain: reducing a complex system into a simpler representation from which to investigate brain organisation. Recent advancement in the neuroimaging field is towards representing brain connectivity as a dynamic process in order to gain a deeper understanding of how the brain is organised for information transport. In this paper we propose a network modelling approach based on the heat kernel to capture the process of heat diffusion in complex networks. By applying the heat kernel to structural brain networks, we define new features which quantify change in heat propagation. Identifying suitable features which can classify networks between cohorts is useful towards understanding the effect of disease on brain architecture. We demonstrate the discriminative power of heat kernel features in both synthetic and clinical preterm data. By generating an extensive range of synthetic networks with varying density and randomisation, we investigate heat diffusion in relation to changes in network topology. We demonstrate that our proposed features provide a metric of network efficiency and may be indicative of organisational principles commonly associated with, for example, small-world architecture. In addition, we show the potential of these features to characterise and classify between network topologies. We further demonstrate our methodology in a clinical setting by applying it to a large cohort of preterm babies scanned at term equivalent age from which diffusion networks were computed. We show that our heat kernel features are able to successfully predict motor function measured at two years of age (sensitivity, specificity, F-score, accuracy = 75.0, 82.5, 78.6, and 82.3%, respectively).

Collaboration


Dive into the Michelle L. Krishnan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alka Saxena

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zi Wang

King's College London

View shared research outputs
Top Co-Authors

Avatar

Ghazala Mirza

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge