Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey W. Johannes is active.

Publication


Featured researches published by Jeffrey W. Johannes.


Journal of the American Chemical Society | 2016

Photoredox Mediated Nickel Catalyzed Cross-Coupling of Thiols With Aryl and Heteroaryl Iodides via Thiyl Radicals

Martins S. Oderinde; Mathieu Frenette; Daniel W. Robbins; Brian Aquila; Jeffrey W. Johannes

Ni-catalyzed cross-couplings of aryl, benzyl, and alkyl thiols with aryl and heteroaryl iodides were accomplished in the presence of an Ir-photoredox catalyst. Highly chemoselective C-S cross-coupling was achieved versus competitive C-O and C-N cross-couplings. This C-S cross-coupling method exhibits remarkable functional group tolerance, and the reactions can be carried out in the presence of molecular oxygen. Mechanistic investigations indicated that the reaction proceeded through transient Ni(I)-species and thiyl radicals. Distinct from nickel-catalyzed cross-coupling reactions involving carbon-centered radicals, control experiments and spectroscopic studies suggest that this C-S cross-coupling reaction does not involve a Ni(0)-species.


Journal of Organic Chemistry | 2015

Effects of Molecular Oxygen, Solvent, and Light on Iridium-Photoredox/Nickel Dual-Catalyzed Cross-Coupling Reactions

Martins S. Oderinde; Adrian Varela-Alvarez; Brian Aquila; Daniel W. Robbins; Jeffrey W. Johannes

In order to achieve reproducibility during iridium-photoredox and nickel dual-catalyzed sp(3)-sp(2) carbon-carbon bond-forming reactions, we investigated the role that molecular oxygen (O2), solvent and light-source (CF lamp or blue LED) play in a variety of Ir-photoredox mediated transformations. The presence of O2 was discovered to be important for catalyst activation when air-stable Ni(II) precatalysts were used in DMF under CF lamp irradiation; however, O2 was not required for catalysis when conducted with Ni(COD)2 in the same reaction system. O2 is believed to promote rapid reduction of the Ni(II) precatalyst by Ir(II) to Ni(0). In addition to O2, the effects that solvent and light-source have on the dual-catalyzed decarboxylative cross-coupling reactions will be discussed. These findings have enabled us to develop a more robust dual-catalyzed decarboxylative cross-coupling protocol.


Angewandte Chemie | 2016

Highly Chemoselective Iridium Photoredox and Nickel Catalysis for the Cross-Coupling of Primary Aryl Amines with Aryl Halides.

Martins S. Oderinde; Natalie H. Jones; Antoine Juneau; Mathieu Frenette; Brian Aquila; Sharon Tentarelli; Daniel W. Robbins; Jeffrey W. Johannes

A visible-light-promoted iridium photoredox and nickel dual-catalyzed cross-coupling procedure for the formation C-N bonds has been developed. With this method, various aryl amines were chemoselectively cross-coupled with electronically and sterically diverse aryl iodides and bromides to forge the corresponding C-N bonds, which are of high interest to the pharmaceutical industries. Aryl iodides were found to be a more efficient electrophilic coupling partner. The coupling reactions were carried out at room temperature without the rigorous exclusion of molecular oxygen, thus making this newly developed Ir-photoredox/Ni dual-catalyzed procedure very mild and operationally simple.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery of azabenzimidazole derivatives as potent, selective inhibitors of TBK1/IKKε kinases.

Tao Wang; Michael A. Block; Scott Cowen; Audrey Davies; Erik Devereaux; Lakshmaiah Gingipalli; Jeffrey W. Johannes; Nicholas A. Larsen; Qibin Su; Julie A. Tucker; David Whitston; Jiaquan Wu; Hai-Jun Zhang; Michael Zinda; Claudio Chuaqui

The design, synthesis and biological evaluation of a series of azabenzimidazole derivatives as TBK1/IKKε kinase inhibitors are described. Starting from a lead compound 1a, iterative design and SAR exploitation of the scaffold led to analogues with nM enzyme potencies against TBK1/IKKε. These compounds also exhibited excellent cellular activity against TBK1. Further structure-based design to improve selectivity over CDK2 and Aurora B resulted in compounds such as 5b-e. These probe compounds will facilitate study of the complex cancer biology of TBK1 and IKKε.


Journal of Medicinal Chemistry | 2013

Discovery and Optimization of a Novel Series of Potent Mutant B-Raf V600E Selective Kinase Inhibitors.

Melissa Vasbinder; Brian Aquila; Martin Augustin; Huawei Chen; Tony Cheung; Donald J. Cook; Lisa Drew; Benjamin P. Fauber; Steve Glossop; Michael Grondine; Edward J. Hennessy; Jeffrey W. Johannes; Stephen Lee; Paul Lyne; Mario Mörtl; Charles Omer; Sangeetha Palakurthi; Timothy Pontz; Jon Read; Li Sha; Minhui Shen; Stefan Steinbacher; Haixia Wang; Allan Wu; Minwei Ye

B-Raf represents an attractive target for anticancer therapy and the development of small molecule B-Raf inhibitors has delivered new therapies for metastatic melanoma patients. We have discovered a novel class of small molecules that inhibit mutant B-Raf(V600E) kinase activity both in vitro and in vivo. Investigations into the structure-activity relationships of the series are presented along with efforts to improve upon the cellular potency, solubility, and pharmacokinetic profile. Compounds selectively inhibited B-Raf(V600E) in vitro and showed preferential antiproliferative activity in mutant B-Raf(V600E) cell lines and exhibited selectivity in a kinase panel against other kinases. Examples from this series inhibit growth of a B-Raf(V600E) A375 xenograft in vivo at a well-tolerated dose. In addition, aminoquinazolines described herein were shown to display pERK elevation in nonmutant B-Raf cell lines in vitro.


ACS Medicinal Chemistry Letters | 2015

Pyrimidinone Nicotinamide Mimetics as Selective Tankyrase and Wnt Pathway Inhibitors Suitable for in Vivo Pharmacology

Jeffrey W. Johannes; Lynsie Almeida; Bernard Barlaam; P. Ann Boriack-Sjodin; Robert Casella; Rosemary A. Croft; Allan Dishington; Lakshmaiah Gingipalli; Chungang Gu; Janet Hawkins; Jane L. Holmes; Tina Howard; Jian Huang; Stephanos Ioannidis; Steven Kazmirski; Michelle L. Lamb; Thomas M. McGuire; Jane E. Moore; Derek Ogg; Anil Patel; Kurt Gordon Pike; Timothy Pontz; Graeme R. Robb; Nancy Su; Haiyun Wang; Xiaoyun Wu; Hai-Jun Zhang; Yue Zhang; Xiaolan Zheng; Tao Wang

The canonical Wnt pathway plays an important role in embryonic development, adult tissue homeostasis, and cancer. Germline mutations of several Wnt pathway components, such as Axin, APC, and ß-catenin, can lead to oncogenesis. Inhibition of the poly(ADP-ribose) polymerase (PARP) catalytic domain of the tankyrases (TNKS1 and TNKS2) is known to inhibit the Wnt pathway via increased stabilization of Axin. In order to explore the consequences of tankyrase and Wnt pathway inhibition in preclinical models of cancer and its impact on normal tissue, we sought a small molecule inhibitor of TNKS1/2 with suitable physicochemical properties and pharmacokinetics for hypothesis testing in vivo. Starting from a 2-phenyl quinazolinone hit (compound 1), we discovered the pyrrolopyrimidinone compound 25 (AZ6102), which is a potent TNKS1/2 inhibitor that has 100-fold selectivity against other PARP family enzymes and shows 5 nM Wnt pathway inhibition in DLD-1 cells. Moreover, compound 25 can be formulated well in a clinically relevant intravenous solution at 20 mg/mL, has demonstrated good pharmacokinetics in preclinical species, and shows low Caco2 efflux to avoid possible tumor resistance mechanisms.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of AZ0108, an orally bioavailable phthalazinone PARP inhibitor that blocks centrosome clustering

Jeffrey W. Johannes; Lynsie Almeida; Kevin Daly; Andrew D. Ferguson; Shaun Grosskurth; Huiping Guan; Tina Howard; Stephanos Ioannidis; Steven Kazmirski; Michelle Lamb; Nicholas A. Larsen; Paul Lyne; Keith Mikule; Claude Ogoe; Bo Peng; Philip Petteruti; Jon Read; Nancy Su; Mark Sylvester; Scott Throner; Wenxian Wang; Xin Wang; Jiaquan Wu; Qing Ye; Yan Yu; Xiaolan Zheng; David Scott

The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZenecas collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.


ACS Medicinal Chemistry Letters | 2017

Structure Based Design of Non-Natural Peptidic Macrocyclic Mcl-1 Inhibitors

Jeffrey W. Johannes; Stephanie Bates; Carl Beigie; Matthew A. Belmonte; John Breen; Shenggen Cao; Paolo A. Centrella; Matthew A. Clark; John W. Cuozzo; Christoph E. Dumelin; Andrew D. Ferguson; Sevan Habeshian; David Hargreaves; Camil Joubran; Steven Kazmirski; Anthony D. Keefe; Michelle L. Lamb; Haiye Lan; Yunxia Li; Hao Ma; Scott Mlynarski; Martin J. Packer; Philip Rawlins; Daniel W. Robbins; Haidong Shen; Eric A. Sigel; Holly H. Soutter; Nancy Su; Dawn M. Troast; Haiyun Wang

Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound 1, a 1.5 μM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound 1 bound to Mcl-1 in a β-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein-ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound 26 is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 μM and Bcl-xL at >99 μM, and induces cleaved caspase-3 in MV4-11 cells with an IC50 of 3 μM after 6 h.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of 6-aryl-azabenzimidaoles that inhibit the TBK1/IKK-ε kinases

Jeffrey W. Johannes; Claudio Chuaqui; Scott Cowen; Erik Devereaux; Lakshmaiah Gingipalli; Audrey Molina; Tao Wang; David Whitston; Xiaoyun Wu; Hai-Jun Zhang; Michael Zinda

The discovery and optimization of a series of 6-aryl-azabenzimidazole inhibitors of TBK1 and IKK-ε is described. Various internal azabenzimidazole leads and reported TBK1/IKK-ε inhibitors were docked into a TBK1 homology model. The resulting overlays inspired a focused screen of 6-substituted azabenzimidazoles against TBK1/IKK-ε. This screen resulted in initial hit compound 3. The TBK1/IKK-ε enzyme and cell potency of this compound was further improved using structure guided drug design. Systematic exploration of the C6 aryl group led to compound 19, a potent inhibitor of TBK1 with selectivity against cell cycle kinases CDK2 and Aurora B. Further elaboration and optimization gave compound 25, a single digit nM inhibitor of TBK1. These compounds may serve as in vitro probes to evaluate TBK1/IKK-ε as an oncology target.


ChemMedChem | 2018

Structure-Based Design of Selective Noncovalent CDK12 Inhibitors

Jeffrey W. Johannes; Christopher R. Denz; Nancy Su; Allan Wu; Anna C. Impastato; Scott Mlynarski; Jeffrey G. Varnes; D. Bryan Prince; Justin Cidado; Ning Gao; Malcolm Haddrick; Natalie H. Jones; Shaobin Li; Xiuwei Li; Yang Liu; Toan B. Nguyen; Nichole O'Connell; Emma Rivers; Daniel W. Robbins; Ronald Tomlinson; Tieguang Yao; Xiahui Zhu; Andrew D. Ferguson; Michelle Lamb; John Irvin Manchester; Sylvie Guichard

Cyclin‐dependent kinase (CDK) 12 knockdown via siRNA decreases the transcription of DNA‐damage‐response genes and sensitizes BRCA wild‐type cells to poly(ADP‐ribose) polymerase (PARP) inhibition. To recapitulate this effect with a small molecule, we sought a potent, selective CDK12 inhibitor. Crystal structures and modeling informed hybridization between dinaciclib and SR‐3029, resulting in lead compound 5 [(S)‐2‐(1‐(6‐(((6,7‐difluoro‐1H‐benzo[d]imidazol‐2‐yl)methyl)amino)‐9‐ethyl‐9H‐purin‐2‐yl)piperidin‐2‐yl)ethan‐1‐ol]. Further structure‐guided optimization delivered a series of selective CDK12 inhibitors, including compound 7 [(S)‐2‐(1‐(6‐(((6,7‐difluoro‐1H‐benzo[d]imidazol‐2‐yl)methyl)amino)‐9‐isopropyl‐9H‐purin‐2‐yl)piperidin‐2‐yl)ethan‐1‐ol]. Profiling of this compound across CDK9, 7, 2, and 1 at high ATP concentration, single‐point kinase panel screening against 352 targets at 0.1 μm, and proteomics via kinase affinity matrix technology demonstrated the selectivity. This series of compounds inhibits phosphorylation of Ser2 on the C‐terminal repeat domain of RNA polymerase II, consistent with CDK12 inhibition. These selective compounds were also acutely toxic to OV90 as well as THP1 cells.

Collaboration


Dive into the Jeffrey W. Johannes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge