Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle M. Averill is active.

Publication


Featured researches published by Michelle M. Averill.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1

Jenny E. Kanter; Farah Kramer; Shelley Barnhart; Michelle M. Averill; Anuradha Vivekanandan-Giri; Thad Vickery; Lei O. Li; Lev Becker; Wei Yuan; Alan Chait; Kathleen R. Braun; Susan Potter-Perigo; Srinath Sanda; Thomas N. Wight; Subramaniam Pennathur; Charles N. Serhan; Jay W. Heinecke; Rosalind A. Coleman; Karin E. Bornfeldt

The mechanisms that promote an inflammatory environment and accelerated atherosclerosis in diabetes are poorly understood. We show that macrophages isolated from two different mouse models of type 1 diabetes exhibit an inflammatory phenotype. This inflammatory phenotype associates with increased expression of long-chain acyl-CoA synthetase 1 (ACSL1), an enzyme that catalyzes the thioesterification of fatty acids. Monocytes from humans and mice with type 1 diabetes also exhibit increased ACSL1. Furthermore, myeloid-selective deletion of ACSL1 protects monocytes and macrophages from the inflammatory effects of diabetes. Strikingly, myeloid-selective deletion of ACSL1 also prevents accelerated atherosclerosis in diabetic mice without affecting lesions in nondiabetic mice. Our observations indicate that ACSL1 plays a critical role by promoting the inflammatory phenotype of macrophages associated with type 1 diabetes; they also raise the possibilities that diabetic atherosclerosis has an etiology that is, at least in part, distinct from the etiology of nondiabetic vascular disease and that this difference is because of increased monocyte and macrophage ACSL1 expression.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

S100A8 and S100A9 in Cardiovascular Biology and Disease

Michelle M. Averill; Claus Kerkhoff; Karin E. Bornfeldt

There is recent and widespread interest in the damage-associated molecular pattern molecules S100A8 and S100A9 in cardiovascular science. These proteins have a number of interesting features and functions. For example, S100A8 and S100A9 (S100A8/A9) have both intracellular and extracellular actions, they are abundantly expressed in inflammatory and autoimmune states, primarily by myeloid cells but also by other vascular cells, and they modulate inflammatory processes, in part through Toll-like receptor 4 and the receptor for advanced glycation end products. S100A8/A9 also have anti-inflammatory and immune regulatory actions. Furthermore, increased plasma levels of S100A8/A9 predict cardiovascular events in humans, and deletion of these proteins partly protects Apoe(-)(/)(-) mice from atherosclerosis. Understanding the roles of S100A8 and S100A9 in vascular cell types and the mechanisms whereby these proteins mediate their biological effects may offer new therapeutic strategies to prevent, treat, and predict cardiovascular diseases.


Circulation | 2011

S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells Implications for Atherosclerosis and Adipose Tissue Inflammation

Michelle M. Averill; Shelley Barnhart; Lev Becker; Xin Li; Jay W. Heinecke; Renee C. LeBoeuf; Jessica A. Hamerman; Clemens Sorg; Claus Kerkhoff; Karin E. Bornfeldt

Background— S100A9 is constitutively expressed in neutrophils, dendritic cells, and monocytes; is associated with acute and chronic inflammatory conditions; and is implicated in obesity and cardiovascular disease in humans. Most of the constitutively secreted S100A9 is derived from myeloid cells. A recent report demonstrated that mice deficient in S100A9 exhibit reduced atherosclerosis compared with controls and suggested that this effect was due in large part to loss of S100A9 in bone marrow–derived cells. Methods and Results— To directly investigate the role of bone marrow–derived S100A9 in atherosclerosis and insulin resistance in mice, low-density lipoprotein receptor–deficient, S100A9-deficient bone marrow chimeras were generated. Neither atherosclerosis nor insulin resistance was reduced in S100A9-deficient chimeras fed a diet rich in fat and carbohydrates. To investigate the reason for this lack of effect, myeloid cells were isolated from the peritoneal cavity or bone marrow. S100A9-deficient neutrophils exhibited a reduced secretion of cytokines in response to toll-like receptor-4 stimulation. In striking contrast, S100A9-deficient dendritic cells showed an exacerbated release of cytokines after toll-like receptor stimulation. Macrophages rapidly lost S100A9 expression during maturation; hence, S100A9 deficiency did not affect the inflammatory status of macrophages. Conclusions— S100A9 differentially modifies phenotypic states of neutrophils, macrophages, and dendritic cells. The effect of S100A9 deficiency on atherosclerosis and other inflammatory diseases is therefore predicted to depend on the relative contribution of these cell types at different stages of disease progression. Furthermore, S100A9 expression in nonmyeloid cells is likely to contribute to atherosclerosis. # Clinical Perspective {#article-title-38}Background— S100A9 is constitutively expressed in neutrophils, dendritic cells, and monocytes; is associated with acute and chronic inflammatory conditions; and is implicated in obesity and cardiovascular disease in humans. Most of the constitutively secreted S100A9 is derived from myeloid cells. A recent report demonstrated that mice deficient in S100A9 exhibit reduced atherosclerosis compared with controls and suggested that this effect was due in large part to loss of S100A9 in bone marrow–derived cells. Methods and Results— To directly investigate the role of bone marrow–derived S100A9 in atherosclerosis and insulin resistance in mice, low-density lipoprotein receptor–deficient, S100A9-deficient bone marrow chimeras were generated. Neither atherosclerosis nor insulin resistance was reduced in S100A9-deficient chimeras fed a diet rich in fat and carbohydrates. To investigate the reason for this lack of effect, myeloid cells were isolated from the peritoneal cavity or bone marrow. S100A9-deficient neutrophils exhibited a reduced secretion of cytokines in response to toll-like receptor-4 stimulation. In striking contrast, S100A9-deficient dendritic cells showed an exacerbated release of cytokines after toll-like receptor stimulation. Macrophages rapidly lost S100A9 expression during maturation; hence, S100A9 deficiency did not affect the inflammatory status of macrophages. Conclusions— S100A9 differentially modifies phenotypic states of neutrophils, macrophages, and dendritic cells. The effect of S100A9 deficiency on atherosclerosis and other inflammatory diseases is therefore predicted to depend on the relative contribution of these cell types at different stages of disease progression. Furthermore, S100A9 expression in nonmyeloid cells is likely to contribute to atherosclerosis.


PLOS ONE | 2012

Unique Proteomic Signatures Distinguish Macrophages and Dendritic Cells

Lev Becker; Ning Chun Liu; Michelle M. Averill; Wei Yuan; Nathalie Pamir; YuFeng Peng; Angela Irwin; Xiaoyun Fu; Karin E. Bornfeldt; Jay W. Heinecke

Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs) that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.


Experimental Dermatology | 2012

Novel insights into the role of S100A8/A9 in skin biology.

Claus Kerkhoff; Andreas Voss; Thomas E. Scholzen; Michelle M. Averill; Kurt S. Zänker; Karin E. Bornfeldt

S100A8 and S100A9 belong to the damage‐associated molecular pattern molecules. They are upregulated in a number of inflammatory skin disorders. Owing to their abundance in myeloid cells, the main function of S100A8/A9 has been attributed to their role in inflammatory cells. However, it is becoming increasingly clear that they also exert important roles in epithelial cells. In this review, we discuss the context‐dependent function of S100A8/A9 in epithelial cells and their impact on wound healing, psoriasis and other skin diseases.


Circulation Research | 2013

Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1.

Tomio Umemoto; Chang Yeop Han; Poulami Mitra; Michelle M. Averill; Chongren Tang; Leela Goodspeed; Mohamed Omer; Savitha Subramanian; Shari Wang; Laura J. Den Hartigh; Hao Wei; Eung Ju Kim; Jinkyu Kim; Kevin D. O’Brien; Alan Chait

Rationale: Macrophage accumulation in adipose tissue associates with insulin resistance and increased cardiovascular disease risk. We previously have shown that generation of reactive oxygen species and monocyte chemotactic factors after exposure of adipocytes to saturated fatty acids, such as palmitate, occurs via translocation of NADPH oxidase 4 into lipid rafts (LRs). The anti-inflammatory effects of apolipoprotein AI (apoAI) and high-density lipoprotein (HDL) on macrophages and endothelial cells seem to occur via cholesterol depletion of LRs. However, little is known concerning anti-inflammatory effects of HDL and apoAI on adipocytes. Objective: To determine whether apoAI and HDL inhibit inflammation in adipocytes and adipose tissue, and whether this is dependent on LRs. Methods and Results: In 3T3L-1 adipocytes, apoAI, HDL, and methyl-β-cyclodextrin inhibited chemotactic factor expression. ApoAI and HDL also disrupted LRs, reduced plasma membrane cholesterol content, inhibited NADPH oxidase 4 translocation into LRs, and reduced palmitate-induced reactive oxygen species generation and monocyte chemotactic factor expression. Silencing ATP-binding cassette A-1 abrogated the effect of apoAI, but not HDL, whereas silencing ATP-binding cassette G-1 or scavenger receptor B-1 abrogated the effect of HDL but not apoAI. In vivo, apoAI transgenic mice fed a high-fat, high-sucrose, cholesterol-containing diet showed reduced chemotactic factor and proinflammatory cytokine expression and reduced macrophage accumulation in adipose tissue. Conclusions: ApoAI and HDL have anti-inflammatory effects in adipocytes and adipose tissue similar to their effects in other cell types. These effects are consistent with disruption and removal of cholesterol from LRs, which are regulated by cholesterol transporters, such as ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. # Novelty and Significance {#article-title-55}Rationale: Macrophage accumulation in adipose tissue associates with insulin resistance and increased cardiovascular disease risk. We previously have shown that generation of reactive oxygen species and monocyte chemotactic factors after exposure of adipocytes to saturated fatty acids, such as palmitate, occurs via translocation of NADPH oxidase 4 into lipid rafts (LRs). The anti-inflammatory effects of apolipoprotein AI (apoAI) and high-density lipoprotein (HDL) on macrophages and endothelial cells seem to occur via cholesterol depletion of LRs. However, little is known concerning anti-inflammatory effects of HDL and apoAI on adipocytes. Objective: To determine whether apoAI and HDL inhibit inflammation in adipocytes and adipose tissue, and whether this is dependent on LRs. Methods and Results: In 3T3L-1 adipocytes, apoAI, HDL, and methyl-&bgr;-cyclodextrin inhibited chemotactic factor expression. ApoAI and HDL also disrupted LRs, reduced plasma membrane cholesterol content, inhibited NADPH oxidase 4 translocation into LRs, and reduced palmitate-induced reactive oxygen species generation and monocyte chemotactic factor expression. Silencing ATP-binding cassette A-1 abrogated the effect of apoAI, but not HDL, whereas silencing ATP-binding cassette G-1 or scavenger receptor B-1 abrogated the effect of HDL but not apoAI. In vivo, apoAI transgenic mice fed a high-fat, high-sucrose, cholesterol-containing diet showed reduced chemotactic factor and proinflammatory cytokine expression and reduced macrophage accumulation in adipose tissue. Conclusions: ApoAI and HDL have anti-inflammatory effects in adipocytes and adipose tissue similar to their effects in other cell types. These effects are consistent with disruption and removal of cholesterol from LRs, which are regulated by cholesterol transporters, such as ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1.


Circulation Research | 2013

Apolipoprotein A-I and HDL Have Anti-Inflammatory Effects on Adipocytes via Cholesterol Transporters: ATP-Binding Cassette (ABC) A-1, ABCG-1 and Scavenger Receptor B-1(SRB-1)

Tomio Umemoto; Chang Yeop Han; Poulami Mitra; Michelle M. Averill; Chongren Tang; Leela Goodspeed; Mohamed Omer; Savitha Subramanian; Shari Wang; Laura J. Den Hartigh; Hao Wei; Eung Ju Kim; Jinkyu Kim; Kevin D. O'Brien; Alan Chait

Rationale: Macrophage accumulation in adipose tissue associates with insulin resistance and increased cardiovascular disease risk. We previously have shown that generation of reactive oxygen species and monocyte chemotactic factors after exposure of adipocytes to saturated fatty acids, such as palmitate, occurs via translocation of NADPH oxidase 4 into lipid rafts (LRs). The anti-inflammatory effects of apolipoprotein AI (apoAI) and high-density lipoprotein (HDL) on macrophages and endothelial cells seem to occur via cholesterol depletion of LRs. However, little is known concerning anti-inflammatory effects of HDL and apoAI on adipocytes. Objective: To determine whether apoAI and HDL inhibit inflammation in adipocytes and adipose tissue, and whether this is dependent on LRs. Methods and Results: In 3T3L-1 adipocytes, apoAI, HDL, and methyl-β-cyclodextrin inhibited chemotactic factor expression. ApoAI and HDL also disrupted LRs, reduced plasma membrane cholesterol content, inhibited NADPH oxidase 4 translocation into LRs, and reduced palmitate-induced reactive oxygen species generation and monocyte chemotactic factor expression. Silencing ATP-binding cassette A-1 abrogated the effect of apoAI, but not HDL, whereas silencing ATP-binding cassette G-1 or scavenger receptor B-1 abrogated the effect of HDL but not apoAI. In vivo, apoAI transgenic mice fed a high-fat, high-sucrose, cholesterol-containing diet showed reduced chemotactic factor and proinflammatory cytokine expression and reduced macrophage accumulation in adipose tissue. Conclusions: ApoAI and HDL have anti-inflammatory effects in adipocytes and adipose tissue similar to their effects in other cell types. These effects are consistent with disruption and removal of cholesterol from LRs, which are regulated by cholesterol transporters, such as ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. # Novelty and Significance {#article-title-55}Rationale: Macrophage accumulation in adipose tissue associates with insulin resistance and increased cardiovascular disease risk. We previously have shown that generation of reactive oxygen species and monocyte chemotactic factors after exposure of adipocytes to saturated fatty acids, such as palmitate, occurs via translocation of NADPH oxidase 4 into lipid rafts (LRs). The anti-inflammatory effects of apolipoprotein AI (apoAI) and high-density lipoprotein (HDL) on macrophages and endothelial cells seem to occur via cholesterol depletion of LRs. However, little is known concerning anti-inflammatory effects of HDL and apoAI on adipocytes. Objective: To determine whether apoAI and HDL inhibit inflammation in adipocytes and adipose tissue, and whether this is dependent on LRs. Methods and Results: In 3T3L-1 adipocytes, apoAI, HDL, and methyl-&bgr;-cyclodextrin inhibited chemotactic factor expression. ApoAI and HDL also disrupted LRs, reduced plasma membrane cholesterol content, inhibited NADPH oxidase 4 translocation into LRs, and reduced palmitate-induced reactive oxygen species generation and monocyte chemotactic factor expression. Silencing ATP-binding cassette A-1 abrogated the effect of apoAI, but not HDL, whereas silencing ATP-binding cassette G-1 or scavenger receptor B-1 abrogated the effect of HDL but not apoAI. In vivo, apoAI transgenic mice fed a high-fat, high-sucrose, cholesterol-containing diet showed reduced chemotactic factor and proinflammatory cytokine expression and reduced macrophage accumulation in adipose tissue. Conclusions: ApoAI and HDL have anti-inflammatory effects in adipocytes and adipose tissue similar to their effects in other cell types. These effects are consistent with disruption and removal of cholesterol from LRs, which are regulated by cholesterol transporters, such as ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1.


Current Drug Targets | 2008

Progression and disruption of advanced atherosclerotic plaques in murine models

Michael E. Rosenfeld; Michelle M. Averill; Brian J. Bennett; Stephen M. Schwartz

The innominate artery is a predilection site for atherosclerotic lesion formation in hyperlipidemic mice. The lesions at this site in chow-fed apo E-/- mice progress from fatty streaks through stages that include atheroma with large necrotic areas, fibro-fatty nodules containing chondrocyte-like cells and highly calcified, acellular plaques. The advanced lesions in the innominate arteries of the apo E-/- mice exhibit a reproducible frequency of intra-plaque hemorrhage that occurs primarily as a result of fissures through lateral fatty streaks that form adjacent to or on top of the established plaques. However, this plaque disruption is not equivalent to plaque rupture in human lesions where there is rupture of well formed fibrous caps. The plaque disruption in the lesions of the chow-fed apo E-/- mice also do not lead to formation of occlusive thrombi, the predominant marker of plaque rupture in humans. Thus, although the lesions in the innominate arteries of hyperlipidemic mice progress to very advanced stages of the disease, they are not, in our opinion a model in which to study the mechanisms of plaque rupture in humans. The advanced lesions in the innominate arteries of the apo E-/- mice may however be adequate models for studying vascular fibrosis and calcification.


PLOS ONE | 2014

Deletion of Serum Amyloid A3 Improves High Fat High Sucrose Diet-Induced Adipose Tissue Inflammation and Hyperlipidemia in Female Mice

Laura J. Den Hartigh; Shari Wang; Leela Goodspeed; Yilei Ding; Michelle M. Averill; Savitha Subramanian; Tomasz Wietecha; Kevin D. O'Brien; Alan Chait

Serum amyloid A (SAA) increases in response to acute inflammatory stimuli and is modestly and chronically elevated in obesity. SAA3, an inducible form of SAA, is highly expressed in adipose tissue in obese mice where it promotes monocyte chemotaxis, providing a mechanism for the macrophage accumulation that occurs with adipose tissue expansion in obesity. Humans do not express functional SAA3 protein, but instead express SAA1 and SAA2 in hepatic as well as extrahepatic tissues, making it difficult to distinguish between liver and adipose tissue-specific SAA effects. SAA3 does not circulate in plasma, but may exert local effects that impact systemic inflammation. We tested the hypothesis that SAA3 contributes to chronic systemic inflammation and adipose tissue macrophage accumulation in obesity using mice deficient for Saa3 (Saa3 −/−). Mice were rendered obese by feeding a pro-inflammatory high fat, high sucrose diet with added cholesterol (HFHSC). Both male and female Saa3 −/− mice gained less weight on the HFHSC diet compared to Saa3+/+ littermate controls, with no differences in body composition or resting metabolism. Female Saa3 −/− mice, but not males, had reduced HFHSC diet-induced adipose tissue inflammation and macrophage content. Both male and female Saa3 −/− mice had reduced liver Saa1 and Saa2 expression in association with reduced plasma SAA. Additionally, female Saa3 −/− mice, but not males, showed improved plasma cholesterol, triglycerides, and lipoprotein profiles, with no changes in glucose metabolism. Taken together, these results suggest that the absence of Saa3 attenuates liver-specific SAA (i.e., SAA1/2) secretion into plasma and blunts weight gain induced by an obesogenic diet. Furthermore, adipose tissue-specific inflammation and macrophage accumulation are attenuated in female Saa3 −/− mice, suggesting a novel sexually dimorphic role for this protein. These results also suggest that Saa3 influences liver-specific SAA1/2 expression, and that SAA3 could play a larger role in the acute phase response than previously thought.


Endocrinology | 2014

Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase

Jung Ting Lee; Nathalie Pamir; Ning Chun Liu; Elizabeth A. Kirk; Michelle M. Averill; Lev Becker; Ilona Larson; Derek K. Hagman; Karen E. Foster-Schubert; Brian Van Yserloo; Karin E. Bornfeldt; Renee C. LeBoeuf; Mario Kratz; Jay W. Heinecke

Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14(+)CD206(+) macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b(+)F4/80(+)CD11c(-) macrophages accumulated to a greater extent in MMP12-deficient (Mmp12(-/-)) mice than in wild-type mice (Mmp12(+/+)). Despite being markedly more obese, fat-fed Mmp12(-/-) mice were more insulin sensitive than fat-fed Mmp12(+/+) mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12(-/-) macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion.

Collaboration


Dive into the Michelle M. Averill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Chait

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shari Wang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Chongren Tang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge