Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Savitha Subramanian is active.

Publication


Featured researches published by Savitha Subramanian.


Journal of Lipid Research | 2011

Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice.

Savitha Subramanian; Leela Goodspeed; Shari A. Wang; Jinkyu Kim; Lixia Zeng; George N. Ioannou; W. Geoffrey Haigh; Matthew M. Yeh; Kris V. Kowdley; Kevin D. O'Brien; Subramaniam Pennathur; Alan Chait

Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver disease. Mechanisms that underlie this progression remain poorly understood, partly due to lack of good animal models that resemble human NASH. We previously showed that several metabolic syndrome features that develop in LDL receptor-deficient (LDLR−/−) mice fed a diabetogenic diet are worsened by dietary cholesterol. To test whether dietary cholesterol can alter the hepatic phenotype in the metabolic syndrome, we fed LDLR−/− mice a high-fat, high-carbohydrate diabetogenic diet (DD) without or with added cholesterol (DDC). Both groups of mice developed obesity and insulin resistance. Hyperinsulinemia, dyslipidemia, hepatic triglyceride, and alanine aminotransferase (ALT) elevations were greater with DDC. Livers of DD-fed mice showed histological changes resembling NAFLD, including steatosis and modest fibrotic changes; however, DDC-fed animals developed micro- and macrovesicular steatosis, inflammatory cell foci, and fibrosis resembling human NASH. Dietary cholesterol also exacerbated hepatic macrophage infiltration, apoptosis, and oxidative stress. Thus, LDLR−/− mice fed diabetogenic diets may be useful models for studying human NASH. Dietary cholesterol appears to confer a second “hit” that results in a distinct hepatic phenotype characterized by increased inflammation and oxidative stress.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice.

Savitha Subramanian; Chang Yeop Han; Tsuyoshi Chiba; Timothy S. McMillen; Shari A. Wang; Antonio Haw; Elizabeth A. Kirk; Kevin D. O’Brien; Alan Chait

Objective—Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease. Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor–deficient (LDLR−/−) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results—LDLR−/− mice were fed chow, high-fat, high-carbohydrate (diabetogenic) diets without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers, and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation, and local inflammation were observed in intraabdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions—Obesity-induced macrophage accumulation in adipose tissue is exacerbated by dietary cholesterol. These local inflammatory changes in adipose tissue are associated with insulin resistance, systemic inflammation, and increased atherosclerosis in this mouse model.


Diabetes | 2007

Adipocyte-Derived Serum Amyloid A3 and Hyaluronan Play a Role in Monocyte Recruitment and Adhesion

Chang Yeop Han; Savitha Subramanian; Christina K. Chan; Mohamed Omer; Tsuyoshi Chiba; Thomas N. Wight; Alan Chait

Obesity is characterized by adipocyte hypertrophy and macrophage accumulation in adipose tissue. Monocyte chemoattractant protein-1 (MCP-1) plays a role in macrophage recruitment into adipose tissue. However, other adipocyte-derived factors, e.g., hyaluronan and serum amyloid A (SAA), can facilitate monocyte adhesion and chemotaxis, respectively. The objective was to test the potential involvement of these factors in macrophage recruitment. Differentiated 3T3-L1 adipocytes made hypertrophic by growth in high glucose conditions were used to study SAA and hyaluronan regulation in vitro. Two mouse models of obesity were used to study their expression in vivo. Nuclear factor-κB was upregulated and peroxisome proliferator–activated receptor (PPAR)γ was downregulated in hypertrophic 3T3-L1 cells, with increased expression of SAA3 and increased hyaluronan production. Rosiglitazone, a PPARγ agonist, reversed these changes. Hypertrophic adipocytes demonstrated overexpression of SAA3 and hyaluronan synthase 2 in vitro and in vivo in diet-induced and genetic obesity. SAA and hyaluronan existed as part of a complex matrix that increased the adhesion and retention of monocytes. This complex, purified by binding to a biotinylated hyaluronan binding protein affinity column, also showed monocyte chemotactic activity, which was dependent on the presence of SAA3 and hyaluronan but independent of MCP-1. We hypothesize that adipocyte hypertrophy leads to increased production of SAA and hyaluronan, which act in concert to recruit and retain monocytes, thereby leading to local inflammation in adipose tissue.


Hepatology | 2013

Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis

Christopher E. Savard; Erica V. Tartaglione; Rahul Kuver; W. Geoffrey Haigh; Geoffrey C Farrell; Savitha Subramanian; Alan Chait; Matthew M. Yeh; LeBris S. Quinn; George N. Ioannou

The majority of patients with nonalcoholic fatty liver disease (NAFLD) have “simple steatosis,” which is defined by hepatic steatosis in the absence of substantial inflammation or fibrosis and is considered to be benign. However, 10%‐30% of patients with NAFLD progress to fibrosing nonalcoholic steatohepatitis (NASH), which is characterized by varying degrees of hepatic inflammation and fibrosis, in addition to hepatic steatosis, and can lead to cirrhosis. The cause(s) of progression to fibrosing steatohepatitis are unclear. We aimed to test the relative contributions of dietary fat and dietary cholesterol and their interaction on the development of NASH. We assigned C57BL/6J mice to four diets for 30 weeks: control (4% fat and 0% cholesterol); high cholesterol (HC; 4% fat and 1% cholesterol); high fat (HF; 15% fat and 0% cholesterol); and high fat, high cholesterol (HFHC; 15% fat and 1% cholesterol). The HF and HC diets led to increased hepatic fat deposition with little inflammation and no fibrosis (i.e., simple hepatic steatosis). However, the HFHC diet led to significantly more profound hepatic steatosis, substantial inflammation, and perisinusoidal fibrosis (i.e., steatohepatitis), associated with adipose tissue inflammation and a reduction in plasma adiponectin levels. In addition, the HFHC diet led to other features of human NASH, including hypercholesterolemia and obesity. Hepatic and metabolic effects induced by dietary fat and cholesterol together were more than twice as great as the sum of the separate effects of each dietary component alone, demonstrating significant positive interaction. Conclusion: Dietary fat and dietary cholesterol interact synergistically to induce the metabolic and hepatic features of NASH, whereas neither factor alone is sufficient to cause NASH in mice. (HEPATOLOGY 2013)


Biochimica et Biophysica Acta | 2012

Hypertriglyceridemia secondary to obesity and diabetes

Savitha Subramanian; Alan Chait

Hypertriglyceridemia is a common lipid abnormality in persons with visceral obesity, metabolic syndrome and type 2 diabetes. Hypertriglyceridemia typically occurs in conjunction with low HDL levels and atherogenic small dense LDL particles and is associated with increased cardiovascular risk. Insulin resistance is often an underlying feature and results in increased free fatty acid (FFA) delivery to the liver due to increased peripheral lipolysis. Increased hepatic VLDL production occurs due to increased substrate availability via FFAs, decreased apolipoprotein B100 degradation and increased lipogenesis. Postprandial hypertriglyceridemia also is a common feature of insulin resistance. Small dense LDL that coexist with decreased HDL particles in hypertriglyceridemic states are highly pro-atherogenic due to their enhanced endothelial permeability, proteoglycan binding abilities and susceptibility to oxidation. Hypertriglyceridemia also occurs in undertreated individuals with type 1 diabetes but intensive glucose control normalizes lipid abnormalities. However, development of visceral obesity in these patients unravels a similar metabolic profile as in patients with insulin resistance. Modest hypertriglyceridemia increases cardiovascular risk, while marked hypertriglyceridemia should be considered a risk for pancreatitis. Lifestyle modification is an important therapeutic strategy. Drug therapy is primarily focused on lowering LDL levels with statins, since efforts at triglyceride lowering and HDL raising with fibrates and/or niacin have not yet been shown to be beneficial in improving cardiovascular risk. Fibrates, however, are first-line agents when marked hypertriglyceridemia is present. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Toll-Like Receptor 4 Deficiency Decreases Atherosclerosis But Does Not Protect Against Inflammation in Obese Low-Density Lipoprotein Receptor–Deficient Mice

Yilei Ding; Savitha Subramanian; Vince N. Montes; Leela Goodspeed; Shari Wang; Chang Yeop Han; Antonio Sta. Teresa; Jinkyu Kim; Kevin D. O’Brien; Alan Chait

Objective—Obesity is associated with insulin resistance, chronic low-grade inflammation, and atherosclerosis. Toll-like receptor 4 (TLR4) participates in the cross talk between inflammation and insulin resistance, being activated by both lipopolysaccharide and saturated fatty acids. The present study was undertaken to determine whether TLR4 deficiency has a protective role in inflammation, insulin resistance, and atherosclerosis induced by a diabetogenic diet. Methods and Results—TLR4 and low-density lipoprotein (LDL) receptor double knockout mice and LDL receptor–deficient mice were fed either a normal chow or a diabetogenic diet for 24 weeks. TLR4 and LDL receptor double knockout mice fed a diabetogenic diet showed improved plasma cholesterol and triglyceride levels but developed obesity, hyperinsulinemia, and glucose intolerance equivalent to obese LDL receptor–deficient mice. Adipocyte hypertrophy, macrophage accumulation, and local inflammation were not attenuated in intraabdominal adipose tissue in TLR4 and LDL receptor double knockout mice. However, TLR4 deficiency led to markedly decreased atherosclerosis in obese TLR4 and LDL receptor double knockout mice. Compensatory upregulation of TLR2 expression was observed both in obese TLR4-deficient mice and in palmitate-treated TLR4-silenced 3T3-L1 adipocytes. Conclusions—TLR4 deficiency decreases atherosclerosis without affecting obesity-induced inflammation and insulin resistance in LDL receptor–deficient mice. Alternative pathways may be responsible for adipose tissue macrophage infiltration and insulin resistance that occurs in obesity.


Current Opinion in Lipidology | 2009

The effect of dietary cholesterol on macrophage accumulation in adipose tissue : implications for systemic inflammation and atherosclerosis

Savitha Subramanian; Alan Chait

Purpose of review It is well recognized that adipose tissue in obesity is characterized by macrophage accumulation and local inflammation. This review summarizes current evidence regarding dietary cholesterol on adipose tissue macrophage accrual, systemic inflammation and its potential link to atherosclerosis. Recent findings Based upon epidemiological data and animal studies, both obesity and dietary cholesterol have been associated with coronary artery disease. However, the effect of dietary cholesterol on adipose tissue has not been widely studied. In an animal model of obesity/metabolic syndrome, feeding a diabetogenic diet high in saturated fat and refined carbohydrate with 0.15% cholesterol added resulted in increased adipose tissue macrophage accumulation, local inflammation and chronic systemic inflammation compared to animals that received the same diet without added cholesterol. There also was an increased macrophage content of atherosclerotic lesions observed in the added cholesterol group. Summary Mechanisms involved in adipose tissue macrophage accrual continue to be elusive. There are limited data that dietary cholesterol may worsen macrophage accumulation in adipose tissue and the artery wall. Cytokines produced by inflamed adipose tissue may lead to inflammatory changes in the liver, which could then play a role in atherogenesis.


Circulation Research | 2013

Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1.

Tomio Umemoto; Chang Yeop Han; Poulami Mitra; Michelle M. Averill; Chongren Tang; Leela Goodspeed; Mohamed Omer; Savitha Subramanian; Shari Wang; Laura J. Den Hartigh; Hao Wei; Eung Ju Kim; Jinkyu Kim; Kevin D. O’Brien; Alan Chait

Rationale: Macrophage accumulation in adipose tissue associates with insulin resistance and increased cardiovascular disease risk. We previously have shown that generation of reactive oxygen species and monocyte chemotactic factors after exposure of adipocytes to saturated fatty acids, such as palmitate, occurs via translocation of NADPH oxidase 4 into lipid rafts (LRs). The anti-inflammatory effects of apolipoprotein AI (apoAI) and high-density lipoprotein (HDL) on macrophages and endothelial cells seem to occur via cholesterol depletion of LRs. However, little is known concerning anti-inflammatory effects of HDL and apoAI on adipocytes. Objective: To determine whether apoAI and HDL inhibit inflammation in adipocytes and adipose tissue, and whether this is dependent on LRs. Methods and Results: In 3T3L-1 adipocytes, apoAI, HDL, and methyl-β-cyclodextrin inhibited chemotactic factor expression. ApoAI and HDL also disrupted LRs, reduced plasma membrane cholesterol content, inhibited NADPH oxidase 4 translocation into LRs, and reduced palmitate-induced reactive oxygen species generation and monocyte chemotactic factor expression. Silencing ATP-binding cassette A-1 abrogated the effect of apoAI, but not HDL, whereas silencing ATP-binding cassette G-1 or scavenger receptor B-1 abrogated the effect of HDL but not apoAI. In vivo, apoAI transgenic mice fed a high-fat, high-sucrose, cholesterol-containing diet showed reduced chemotactic factor and proinflammatory cytokine expression and reduced macrophage accumulation in adipose tissue. Conclusions: ApoAI and HDL have anti-inflammatory effects in adipocytes and adipose tissue similar to their effects in other cell types. These effects are consistent with disruption and removal of cholesterol from LRs, which are regulated by cholesterol transporters, such as ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. # Novelty and Significance {#article-title-55}Rationale: Macrophage accumulation in adipose tissue associates with insulin resistance and increased cardiovascular disease risk. We previously have shown that generation of reactive oxygen species and monocyte chemotactic factors after exposure of adipocytes to saturated fatty acids, such as palmitate, occurs via translocation of NADPH oxidase 4 into lipid rafts (LRs). The anti-inflammatory effects of apolipoprotein AI (apoAI) and high-density lipoprotein (HDL) on macrophages and endothelial cells seem to occur via cholesterol depletion of LRs. However, little is known concerning anti-inflammatory effects of HDL and apoAI on adipocytes. Objective: To determine whether apoAI and HDL inhibit inflammation in adipocytes and adipose tissue, and whether this is dependent on LRs. Methods and Results: In 3T3L-1 adipocytes, apoAI, HDL, and methyl-&bgr;-cyclodextrin inhibited chemotactic factor expression. ApoAI and HDL also disrupted LRs, reduced plasma membrane cholesterol content, inhibited NADPH oxidase 4 translocation into LRs, and reduced palmitate-induced reactive oxygen species generation and monocyte chemotactic factor expression. Silencing ATP-binding cassette A-1 abrogated the effect of apoAI, but not HDL, whereas silencing ATP-binding cassette G-1 or scavenger receptor B-1 abrogated the effect of HDL but not apoAI. In vivo, apoAI transgenic mice fed a high-fat, high-sucrose, cholesterol-containing diet showed reduced chemotactic factor and proinflammatory cytokine expression and reduced macrophage accumulation in adipose tissue. Conclusions: ApoAI and HDL have anti-inflammatory effects in adipocytes and adipose tissue similar to their effects in other cell types. These effects are consistent with disruption and removal of cholesterol from LRs, which are regulated by cholesterol transporters, such as ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1.


Circulation Research | 2013

Apolipoprotein A-I and HDL Have Anti-Inflammatory Effects on Adipocytes via Cholesterol Transporters: ATP-Binding Cassette (ABC) A-1, ABCG-1 and Scavenger Receptor B-1(SRB-1)

Tomio Umemoto; Chang Yeop Han; Poulami Mitra; Michelle M. Averill; Chongren Tang; Leela Goodspeed; Mohamed Omer; Savitha Subramanian; Shari Wang; Laura J. Den Hartigh; Hao Wei; Eung Ju Kim; Jinkyu Kim; Kevin D. O'Brien; Alan Chait

Rationale: Macrophage accumulation in adipose tissue associates with insulin resistance and increased cardiovascular disease risk. We previously have shown that generation of reactive oxygen species and monocyte chemotactic factors after exposure of adipocytes to saturated fatty acids, such as palmitate, occurs via translocation of NADPH oxidase 4 into lipid rafts (LRs). The anti-inflammatory effects of apolipoprotein AI (apoAI) and high-density lipoprotein (HDL) on macrophages and endothelial cells seem to occur via cholesterol depletion of LRs. However, little is known concerning anti-inflammatory effects of HDL and apoAI on adipocytes. Objective: To determine whether apoAI and HDL inhibit inflammation in adipocytes and adipose tissue, and whether this is dependent on LRs. Methods and Results: In 3T3L-1 adipocytes, apoAI, HDL, and methyl-β-cyclodextrin inhibited chemotactic factor expression. ApoAI and HDL also disrupted LRs, reduced plasma membrane cholesterol content, inhibited NADPH oxidase 4 translocation into LRs, and reduced palmitate-induced reactive oxygen species generation and monocyte chemotactic factor expression. Silencing ATP-binding cassette A-1 abrogated the effect of apoAI, but not HDL, whereas silencing ATP-binding cassette G-1 or scavenger receptor B-1 abrogated the effect of HDL but not apoAI. In vivo, apoAI transgenic mice fed a high-fat, high-sucrose, cholesterol-containing diet showed reduced chemotactic factor and proinflammatory cytokine expression and reduced macrophage accumulation in adipose tissue. Conclusions: ApoAI and HDL have anti-inflammatory effects in adipocytes and adipose tissue similar to their effects in other cell types. These effects are consistent with disruption and removal of cholesterol from LRs, which are regulated by cholesterol transporters, such as ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. # Novelty and Significance {#article-title-55}Rationale: Macrophage accumulation in adipose tissue associates with insulin resistance and increased cardiovascular disease risk. We previously have shown that generation of reactive oxygen species and monocyte chemotactic factors after exposure of adipocytes to saturated fatty acids, such as palmitate, occurs via translocation of NADPH oxidase 4 into lipid rafts (LRs). The anti-inflammatory effects of apolipoprotein AI (apoAI) and high-density lipoprotein (HDL) on macrophages and endothelial cells seem to occur via cholesterol depletion of LRs. However, little is known concerning anti-inflammatory effects of HDL and apoAI on adipocytes. Objective: To determine whether apoAI and HDL inhibit inflammation in adipocytes and adipose tissue, and whether this is dependent on LRs. Methods and Results: In 3T3L-1 adipocytes, apoAI, HDL, and methyl-&bgr;-cyclodextrin inhibited chemotactic factor expression. ApoAI and HDL also disrupted LRs, reduced plasma membrane cholesterol content, inhibited NADPH oxidase 4 translocation into LRs, and reduced palmitate-induced reactive oxygen species generation and monocyte chemotactic factor expression. Silencing ATP-binding cassette A-1 abrogated the effect of apoAI, but not HDL, whereas silencing ATP-binding cassette G-1 or scavenger receptor B-1 abrogated the effect of HDL but not apoAI. In vivo, apoAI transgenic mice fed a high-fat, high-sucrose, cholesterol-containing diet showed reduced chemotactic factor and proinflammatory cytokine expression and reduced macrophage accumulation in adipose tissue. Conclusions: ApoAI and HDL have anti-inflammatory effects in adipocytes and adipose tissue similar to their effects in other cell types. These effects are consistent with disruption and removal of cholesterol from LRs, which are regulated by cholesterol transporters, such as ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1.


Journal of Clinical Investigation | 2016

Serum amyloid A impairs the antiinflammatory properties of HDL

Chang Yeop Han; Chongren Tang; Myriam E. Guevara; Hao Wei; Tomasz Wietecha; Baohai Shao; Savitha Subramanian; Mohamed Omer; Shari Wang; Kevin D. O’Brien; Santica M. Marcovina; Thomas N. Wight; Tomas Vaisar; Maria C. de Beer; Frederick C. de Beer; William R. A. Osborne; Keith B. Elkon; Alan Chait

HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane.

Collaboration


Dive into the Savitha Subramanian's collaboration.

Top Co-Authors

Avatar

Alan Chait

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shari Wang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Yeop Han

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed Omer

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jinkyu Kim

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chongren Tang

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge