Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle M. Wiest is active.

Publication


Featured researches published by Michelle M. Wiest.


Cell | 2008

Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism

Haiming Cao; Kristin Gerhold; Jared R. Mayers; Michelle M. Wiest; Steven M. Watkins; Gökhan S. Hotamisligil

Dysregulation of lipid metabolism in individual tissues leads to systemic disruption of insulin action and glucose metabolism. Utilizing quantitative lipidomic analyses and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.


Hepatology | 2007

A lipidomic analysis of nonalcoholic fatty liver disease

Puneet Puri; Rebecca A. Baillie; Michelle M. Wiest; Faridoddin Mirshahi; Jayanta Choudhury; Onpan Cheung; Carol Sargeant; Melissa J. Contos; Arun J. Sanyal

The spectrum of nonalcoholic fatty liver disease (NAFLD) includes a nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). The specific types and amounts of lipids that accumulate in NAFLD are not fully defined. The free fatty acid (FFA), diacylglycerol (DAG), triacylglycerol (TAG), free cholesterol (FC), cholesterol ester, and phospholipid contents in normal livers were quantified and compared to those of NAFL and NASH, and the distribution of fatty acids within these classes was compared across these groups. Hepatic lipids were quantified by capillary gas chromatography. The mean (nmol/g of tissue) DAG (normal/NAFL/NASH: 1922 versus 4947 versus 3304) and TAG (13,609 versus 128,585 versus 104,036) increased significantly in NAFLD, but FFA remained unaltered (5533 versus 5929 versus 6115). There was a stepwise increase in the mean TAG/DAG ratio from normal livers to NAFL to NASH (7 versus 26 versus 31, P < 0.001). There was also a similar stepwise increment in hepatic FC (7539 versus 10,383 versus 12,863, P < 0.05 for NASH). The total phosphatidylcholine (PC) decreased in both NAFL and NASH. The FC/PC ratio increased progressively (0.34 versus 0.69 versus 0.71, P < 0.008 for both). Although the levels for linoleic acid (18:2n‐6) and α‐linolenic acid (18:3n‐3) remained unaltered, there was a decrease in arachidonic acid (20:4n‐6) in FFA, TAG, and PC (P < 0.05 for all) in NASH. Eicosapentanoic acid (20:5n‐3) and docosahexanoic acid (22:6n‐3) were decreased in TAG in NASH. The n‐6:n‐3 FFA ratio increased in NASH (P < 0.05). Conclusions: NAFLD is associated with numerous changes in the lipid composition of the liver. The potential implications are discussed. (HEPATOLOGY 2007.)


Nature Medicine | 2009

Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis.

Ebru Erbay; Vladimir R. Babaev; Jared R. Mayers; Liza Makowski; Khanichi N. Charles; Melinda Snitow; Sergio Fazio; Michelle M. Wiest; Steven M. Watkins; MacRae F. Linton; Gökhan S. Hotamisligil

Macrophages show endoplasmic reticulum (ER) stress when exposed to lipotoxic signals associated with atherosclerosis, although the pathophysiological importance and the underlying mechanisms of this phenomenon remain unknown. Here we show that mitigation of ER stress with a chemical chaperone results in marked protection against lipotoxic death in macrophages and prevents macrophage fatty acid–binding protein-4 (aP2) expression. Using genetic and chemical models, we show that aP2 is the predominant regulator of lipid-induced macrophage ER stress. The absence of lipid chaperones incites an increase in the production of phospholipids rich in monounsaturated fatty acids and bioactive lipids that render macrophages resistant to lipid-induced ER stress. Furthermore, the impact of aP2 on macrophage lipid metabolism and the ER stress response is mediated by upregulation of key lipogenic enzymes by the liver X receptor. Our results demonstrate the central role for lipid chaperones in regulating ER homeostasis in macrophages in atherosclerosis and show that ER responses can be modified, genetically or chemically, to protect the organism against the deleterious effects of hyperlipidemia.


Hepatology | 2009

The plasma lipidomic signature of nonalcoholic steatohepatitis

Puneet Puri; Michelle M. Wiest; Onpan Cheung; Faridoddin Mirshahi; Carol Sargeant; Hae-Ki Min; Melissa J. Contos; Richard K. Sterling; Michael Fuchs; Huiping Zhou; Steven M. Watkins; Arun J. Sanyal

Specific alterations in hepatic lipid composition characterize the spectrum of nonalcoholic fatty liver disease (NAFLD), which extends from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). However, the plasma lipidome of NAFLD and whether NASH has a distinct plasma lipidomic signature are unknown. A comprehensive analysis of plasma lipids and eicosanoid metabolites quantified by mass spectrometry was performed in NAFL (n = 25) and NASH (n = 50) subjects and compared with lean normal controls (n = 50). The key findings include significantly increased total plasma monounsaturated fatty acids driven by palmitoleic (16:1 n7) and oleic (18:1 n9) acids content (P < 0.01 for both acids in both NAFL and NASH). The levels of palmitoleic acid, oleic acid, and palmitoleic acid to palmitic acid (16:0) ratio were significantly increased in NAFLD across multiple lipid classes. Linoleic acid (8:2n6) was decreased (P < 0.05), with a concomitant increase in γ‐linolenic (18:3n6) and dihomo γ‐linolenic (20:3n6) acids in both NAFL and NASH (P < 0.001 for most lipid classes). The docosahexanoic acid (22:6 n3) to docosapentenoic acid (22:5n3) ratio was significantly decreased within phosphatidylcholine (PC), and phosphatidylethanolamine (PE) pools, which was most marked in NASH subjects (P < 0.01 for PC and P < 0.001 for PE). The total plasmalogen levels were significantly decreased in NASH compared with controls (P < 0.05). A stepwise increase in lipoxygenase (LOX) metabolites 5(S)‐hydroxyeicosatetraenoic acid (5‐HETE), 8‐HETE, and 15‐HETE characterized progression from normal to NAFL to NASH. The level of 11‐HETE, a nonenzymatic oxidation product of arachidonic (20:4) acid, was significantly increased in NASH only. Conclusions: Although increased lipogenesis, desaturases, and LOX activities characterize NAFL and NASH, impaired peroxisomal polyunsaturated fatty acid (PUFA) metabolism and nonenzymatic oxidation is associated with progression to NASH. (HEPATOLOGY 2009;50:1827–1838.)


PLOS ONE | 2011

Enteric microbiome metabolites correlate with response to simvastatin treatment.

Rima Kaddurah-Daouk; Rebecca A. Baillie; Hongjie Zhu; Zhao-Bang Zeng; Michelle M. Wiest; Uyen D. T. Nguyen; Katie Wojnoonski; Steven M. Watkins; Miles Trupp; Ronald M. Krauss

Although statins are widely prescribed medications, there remains considerable variability in therapeutic response. Genetics can explain only part of this variability. Metabolomics is a global biochemical approach that provides powerful tools for mapping pathways implicated in disease and in response to treatment. Metabolomics captures net interactions between genome, microbiome and the environment. In this study, we used a targeted GC-MS metabolomics platform to measure a panel of metabolites within cholesterol synthesis, dietary sterol absorption, and bile acid formation to determine metabolite signatures that may predict variation in statin LDL-C lowering efficacy. Measurements were performed in two subsets of the total study population in the Cholesterol and Pharmacogenetics (CAP) study: Full Range of Response (FR), and Good and Poor Responders (GPR) were 100 individuals randomly selected from across the entire range of LDL-C responses in CAP. GPR were 48 individuals, 24 each from the top and bottom 10% of the LDL-C response distribution matched for body mass index, race, and gender. We identified three secondary, bacterial-derived bile acids that contribute to predicting the magnitude of statin-induced LDL-C lowering in good responders. Bile acids and statins share transporters in the liver and intestine; we observed that increased plasma concentration of simvastatin positively correlates with higher levels of several secondary bile acids. Genetic analysis of these subjects identified associations between levels of seven bile acids and a single nucleotide polymorphism (SNP), rs4149056, in the gene encoding the organic anion transporter SLCO1B1. These findings, along with recently published results that the gut microbiome plays an important role in cardiovascular disease, indicate that interactions between genome, gut microbiome and environmental influences should be considered in the study and management of cardiovascular disease. Metabolic profiles could provide valuable information about treatment outcomes and could contribute to a more personalized approach to therapy.


Metabolomics | 2010

Lipidomic analysis of variation in response to simvastatin in the Cholesterol and Pharmacogenetics Study

Rima Kaddurah-Daouk; Rebecca A. Baillie; Hongjie Zhu; Zhao-Bang Zeng; Michelle M. Wiest; Uyen T. T. Nguyen; Steven M. Watkins; Ronald M. Krauss

Statins are commonly used for reducing cardiovascular disease risk but therapeutic benefit and reductions in levels of low-density lipoprotein cholesterol (LDL-C) vary among individuals. Other effects, including reductions in C-reactive protein (CRP), also contribute to treatment response. Metabolomics provides powerful tools to map pathways implicated in variation in response to statin treatment. This could lead to mechanistic hypotheses that provide insight into the underlying basis for individual variation in drug response. Using a targeted lipidomics platform, we defined lipid changes in blood samples from the upper and lower tails of the LDL-C response distribution in the Cholesterol and Pharmacogenetics study. Metabolic changes in responders are more comprehensive than those seen in non-responders. Baseline cholesterol ester and phospholipid metabolites correlated with LDL-C response to treatment. CRP response to therapy correlated with baseline plasmalogens, lipids involved in inflammation. There was no overlap of lipids whose changes correlated with LDL-C or CRP responses to simvastatin suggesting that distinct metabolic pathways govern statin effects on these two biomarkers. Metabolic signatures could provide insights about variability in response and mechanisms of action of statins.


American Journal of Physiology-endocrinology and Metabolism | 2009

Alteration in plasma testosterone levels in male mice lacking soluble epoxide hydrolase

Ayala Luria; Christophe Morisseau; Hsing Ju Tsai; Jun Yang; Bora Inceoglu; Bart De Taeye; Steven M. Watkins; Michelle M. Wiest; J. Bruce German; Bruce D. Hammock

Soluble epoxide hydrolase (Ephx2, sEH) is a bifunctional enzyme with COOH-terminal hydrolase and NH(2)-terminal phosphatase activities. sEH converts epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), and the phosphatase activity is suggested to be involved in cholesterol metabolism. EETs participate in a wide range of biological functions, including regulation of vascular tone, renal tubular transport, cardiac contractility, and inflammation. Inhibition of sEH is a potential approach for enhancing the biological activity of EETs. Therefore, disruption of sEH activity is becoming an attractive therapeutic target for both cardiovascular and inflammatory diseases. To define the physiological role of sEH, we characterized a knockout mouse colony lacking expression of the Ephx2 gene. Lack of sEH enzyme is characterized by elevation of EET to DHET ratios in both the linoleate and arachidonate series in plasma and tissues of both female and male mice. In male mice, this lack of expression was also associated with decreased plasma testosterone levels, sperm count, and testicular size. However, this genotype was still able to sire litters. Plasma cholesterol levels also declined in this genotype. Behavior tests such as anxiety-like behavior and hedonic response were also examined in Ephx2-null and WT mice, as all can be related to hormonal changes. Null mice showed a level of anxiety with a decreased hedonic response. In conclusion, this study provides a broad biochemical, physiological, and behavioral characterization of the Ephx2-null mouse colony and suggests a mechanism by which sEH and its substrates may regulate circulating levels of testosterone through cholesterol biosynthesis and metabolism.


Current Opinion in Lipidology | 2007

Biomarker discovery using high-dimensional lipid analysis

Michelle M. Wiest; Steven M. Watkins

Purpose of review High-dimensional lipid analysis technologies (lipidomics) provide researchers with an opportunity to measure lipids on an unprecedented scale. They do not, however, guarantee a fast track to new knowledge. The vast amount of data produced by these platforms presents a major hurdle to assembling valid knowledge and to the discovery of mechanistic biomarkers. This review examines strategies for improving the quality of high-dimensional lipid data and streamlining data analysis to increase the value of lipidomics platforms to research and commercial applications. Recent findings Recent articles focus on careful study design and data analysis protocols. Authors offer detailed descriptions of study populations, analytical methods and data analysis, and highlight the use of practical data preprocessing and the incorporation of biological knowledge into data analysis. Summary The field is moving towards more methodical and structured approaches to biomarker identification. Experimental designs focusing on well-defined outcomes have a better chance of producing biologically relevant results. The high-dimensional lipid analysis techniques available are varied, have different strengths and weaknesses, and must be chosen carefully depending on the experimental design and application. Many techniques for data analysis are available, but the most successful are those incorporating existing biological knowledge into the statistical analysis.


Nutrition & Metabolism | 2011

Dietary fat and not calcium supplementation or dairy product consumption is associated with changes in anthropometrics during a randomized, placebo-controlled energy-restriction trial.

Jennifer T. Smilowitz; Michelle M. Wiest; Dorothy Teegarden; Michael B. Zemel; J. Bruce German; Marta D. Van Loan

Insufficient calcium intake has been proposed to cause unbalanced energy partitioning leading to obesity. However, weight loss interventions including dietary calcium or dairy product consumption have not reported changes in lipid metabolism measured by the plasma lipidome.MethodsThe objective of this study was to determine the relationships between dairy product or supplemental calcium intake with changes in the plasma lipidome and body composition during energy restriction. A secondary objective of this study was to explore the relationships among calculated macronutrient composition of the energy restricted diet to changes in the plasma lipidome, and body composition during energy restriction. Overweight adults (n = 61) were randomized into one of three intervention groups including a deficit of 500kcal/d: 1) placebo; 2) 900 mg/d calcium supplement; and 3) 3-4 servings of dairy products/d plus a placebo supplement. Plasma fatty acid methyl esters of cholesterol ester, diacylglycerol, free fatty acids, lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamine and triacylglycerol were quantified by capillary gas chromatography.ResultsAfter adjustments for energy and protein (g/d) intake, there was no significant effect of treatment on changes in weight, waist circumference or body composition. Plasma lipidome did not differ among dietary treatment groups. Stepwise regression identified correlations between reported intake of monounsaturated fat (% of energy) and changes in % lean mass (r = -0.44, P < 0.01) and % body fat (r = 0.48, P < 0.001). Polyunsaturated fat intake was associated with the % change in waist circumference (r = 0.44, P < 0.01). Dietary saturated fat was not associated with any changes in anthropometrics or the plasma lipidome.ConclusionsDairy product consumption or calcium supplementation during energy restriction over the course of 12 weeks did not affect plasma lipids. Independent of calcium and dairy product consumption, short-term energy restriction altered body composition. Reported dietary fat composition of energy restricted diets was associated with the degree of change in body composition in these overweight and obese individuals.


Frontiers in Aging Neuroscience | 2016

Mobility and Upright Posture Are Associated with Different Aspects of Cognition in Older Adults.

Rajal G. Cohen; Anita N. Vasavada; Michelle M. Wiest; Maureen Schmitter-Edgecombe

Objectives: Aging is associated with cognitive decline, including visuomotor and memory concerns, and with motor system changes, including gait slowing and stooped posture. We investigated the associations of visuomotor performance and episodic memory with motor system characteristics in healthy older adults. Methods: Neurologically healthy older adults (N = 160, aged 50–89) completed a battery of cognitive and motor tasks. Cognitive variables were grouped by principal components analysis (PCA) into two components: visuomotor performance and verbal episodic memory. Our primary predictor variables were two aspects of motor function: timed-up-and-go (TUG) speed and neck angle. Additional predictor variables included demographic factors (age, sex and education) and indicators of physical fitness (body mass index/BMI and grip strength). All seven predictor variables were entered stepwise into a multiple regression model for each cognitive component. Results: Poor visuomotor performance was best predicted by a combination of advanced age, high BMI and slow TUG, whereas poor verbal memory performance was best predicted by a combination of advanced age, male sex, low education and acute neck angle. Conclusions: Upright posture and mobility were associated with different cognitive processes, suggesting different underlying neural mechanisms. These results provide the first evidence for a link between postural alignment and cognitive functioning in healthy older adults. Possible causal relationships are discussed.

Collaboration


Dive into the Michelle M. Wiest's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca A. Baillie

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Pilliod

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jared R. Mayers

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joseph D. Holbrook

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge