Michelle M. Williams
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michelle M. Williams.
Journal of Clinical Investigation | 2013
Meghan M. Morrison; Katherine E. Hutchinson; Michelle M. Williams; Jamie C. Stanford; Justin M. Balko; Christian D. Young; Maria G. Kuba; Violeta Sanchez; Andrew J. Williams; Donna Hicks; Carlos L. Arteaga; Aleix Prat; Charles M. Perou; H. Shelton Earp; Suleiman Massarweh; Rebecca S. Cook
Aberrant regulation of the erythroblastosis oncogene B (ErbB) family of receptor tyrosine kinases (RTKs) and their ligands is common in human cancers. ErbB3 is required in luminal mammary epithelial cells (MECs) for growth and survival. Since breast cancer phenotypes may reflect biological traits of the MECs from which they originate, we tested the hypothesis that ErbB3 drives luminal breast cancer growth. We found higher ERBB3 expression and more frequent ERBB3 gene copy gains in luminal A/B breast cancers compared with other breast cancer subtypes. In cell culture, ErbB3 increased growth of luminal breast cancer cells. Targeted depletion of ErbB3 with an anti-ErbB3 antibody decreased 3D colony growth, increased apoptosis, and decreased tumor growth in vivo. Treatment of clinical breast tumors with the antiendocrine drug fulvestrant resulted in increased ErbB3 expression and PI3K/mTOR signaling. Depletion of ErbB3 in fulvestrant-treated tumor cells reduced PI3K/mTOR signaling, thus decreasing tumor cell survival and tumor growth. Fulvestrant treatment increased phosphorylation of all ErbB family RTKs; however, phospho-RTK upregulation was not seen in tumors treated with both fulvestrant and anti-ErbB3. These data indicate that upregulation of ErbB3 in luminal breast cancer cells promotes growth, survival, and resistance to fulvestrant, thus suggesting ErbB3 as a target for breast cancer treatment.
Cancer Research | 2016
Meghan Morrison Joly; Donna Hicks; Bayley Jones; Violeta Sanchez; Monica V. Estrada; Christian D. Young; Michelle M. Williams; Brent N. Rexer; Dos D. Sarbassov; William J. Muller; Dana M. Brantley-Sieders; Rebecca S. Cook
HER2 overexpression drives Akt signaling and cell survival and HER2-enriched breast tumors have a poor outcome when Akt is upregulated. Akt is activated by phosphorylation at T308 via PI3K and S473 via mTORC2. The importance of PI3K-activated Akt signaling is well documented in HER2-amplified breast cancer models, but the significance of mTORC2-activated Akt signaling in this setting remains uncertain. We report here that the mTORC2 obligate cofactor Rictor is enriched in HER2-amplified samples, correlating with increased phosphorylation at S473 on Akt. In invasive breast cancer specimens, Rictor expression was upregulated significantly compared with nonmalignant tissues. In a HER2/Neu mouse model of breast cancer, genetic ablation of Rictor decreased cell survival and phosphorylation at S473 on Akt, delaying tumor latency, penetrance, and burden. In HER2-amplified cells, exposure to an mTORC1/2 dual kinase inhibitor decreased Akt-dependent cell survival, including in cells resistant to lapatinib, where cytotoxicity could be restored. We replicated these findings by silencing Rictor in breast cancer cell lines, but not silencing the mTORC1 cofactor Raptor (RPTOR). Taken together, our findings establish that Rictor/mTORC2 signaling drives Akt-dependent tumor progression in HER2-amplified breast cancers, rationalizing clinical investigation of dual mTORC1/2 kinase inhibitors and developing mTORC2-specific inhibitors for use in this setting. Cancer Res; 76(16); 4752-64. ©2016 AACR.
Cell Reports | 2015
Charles H. Williams; Jonathan E. Hempel; Jijun Hao; Audrey Y. Frist; Michelle M. Williams; Jonathan T. Fleming; Gary A. Sulikowski; Michael K. Cooper; Chin Chiang; Charles C. Hong
Hedgehog (Hh) signaling plays an integral role in vertebrate development, and its dysregulation has been accepted widely as a driver of numerous malignancies. While a variety of small molecules target Smoothened (Smo) as a strategy for Hh inhibition, Smo gain-of-function mutations have limited their clinical implementation. Modulation of targets downstream of Smo could define a paradigm for treatment of Hh-dependent cancers. Here, we describe eggmanone, a small molecule identified from a chemical genetic zebrafish screen, which induced an Hh-null phenotype. Eggmanone exerts its Hh-inhibitory effects through selective antagonism of phosphodiesterase 4 (PDE4), leading to protein kinase A activation and subsequent Hh blockade. Our study implicates PDE4 as a target for Hh inhibition, suggests an improved strategy for Hh-dependent cancer therapy, and identifies a unique probe of downstream-of-Smo Hh modulation.
Breast Cancer Research | 2017
Meghan Morrison Joly; Michelle M. Williams; Donna Hicks; Bayley Jones; Violeta Sanchez; Christian D. Young; Dos D. Sarbassov; William J. Muller; Dana M. Brantley-Sieders; Rebecca S. Cook
BackgroundThe importance of the mTOR complex 2 (mTORC2) signaling complex in tumor progression is becoming increasingly recognized. HER2-amplified breast cancers use Rictor/mTORC2 signaling to drive tumor formation, tumor cell survival and resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy. Cell motility, a key step in the metastatic process, can be activated by mTORC2 in luminal and triple negative breast cancer cell lines, but its role in promoting metastases from HER2-amplified breast cancers is not yet clear.MethodsBecause Rictor is an obligate cofactor of mTORC2, we genetically engineered Rictor ablation or overexpression in mouse and human HER2-amplified breast cancer models for modulation of mTORC2 activity. Signaling through mTORC2-dependent pathways was also manipulated using pharmacological inhibitors of mTOR, Akt, and Rac. Signaling was assessed by western analysis and biochemical pull-down assays specific for Rac-GTP and for active Rac guanine nucleotide exchange factors (GEFs). Metastases were assessed from spontaneous tumors and from intravenously delivered tumor cells. Motility and invasion of cells was assessed using Matrigel-coated transwell assays.ResultsWe found that Rictor ablation potently impaired, while Rictor overexpression increased, metastasis in spontaneous and intravenously seeded models of HER2-overexpressing breast cancers. Additionally, migration and invasion of HER2-amplified human breast cancer cells was diminished in the absence of Rictor, or upon pharmacological mTOR kinase inhibition. Active Rac1 was required for Rictor-dependent invasion and motility, which rescued invasion/motility in Rictor depleted cells. Rictor/mTORC2-dependent dampening of the endogenous Rac1 inhibitor RhoGDI2, a factor that correlated directly with increased overall survival in HER2-amplified breast cancer patients, promoted Rac1 activity and tumor cell invasion/migration. The mTORC2 substrate Akt did not affect RhoGDI2 dampening, but partially increased Rac1 activity through the Rac-GEF Tiam1, thus partially rescuing cell invasion/motility. The mTORC2 effector protein kinase C (PKC)α did rescue Rictor-mediated RhoGDI2 downregulation, partially rescuing Rac-guanosine triphosphate (GTP) and migration/motility.ConclusionThese findings suggest that mTORC2 uses two coordinated pathways to activate cell invasion/motility, both of which converge on Rac1. Akt signaling activates Rac1 through the Rac-GEF Tiam1, while PKC signaling dampens expression of the endogenous Rac1 inhibitor, RhoGDI2.
Molecular Cancer Research | 2017
Michelle M. Williams; Linus Lee; Donna Hicks; Meghan Morrison Joly; David L. Elion; Bushra Rahman; Courtney McKernan; Violeta Sanchez; Justin M. Balko; Thomas Stricker; Monica V. Estrada; Rebecca S. Cook
An estimated 40,000 deaths will be attributed to breast cancer in 2016, underscoring the need for improved therapies. Evading cell death is a major hallmark of cancer, driving tumor progression and therapeutic resistance. To evade apoptosis, cancers use antiapoptotic Bcl-2 proteins to bind to and neutralize apoptotic activators, such as Bim. Investigation of antiapoptotic Bcl-2 family members in clinical breast cancer datasets revealed greater expression and more frequent gene amplification of MCL1 as compared with BCL2 or BCL2L1 (Bcl-xL) across three major molecular breast cancer subtypes, Luminal (A and B), HER2-enriched, and Basal-like. While Mcl-1 protein expression was elevated in estrogen receptor α (ERα)-positive and ERα-negative tumors as compared with normal breast, Mcl-1 staining was higher in ERα+ tumors. Targeted Mcl-1 blockade using RNAi increased caspase-mediated cell death in ERα+ breast cancer cells, resulting in sustained growth inhibition. In contrast, combined blockade of Bcl-2 and Bcl-xL only transiently induced apoptosis, as cells rapidly acclimated through Mcl-1 upregulation and enhanced Mcl-1 activity, as measured in situ using Mcl-1/Bim proximity ligation assays. Importantly, MCL1 gene expression levels correlated inversely with sensitivity to pharmacologic Bcl-2/Bcl-xL inhibition in luminal breast cancer cells, whereas no relationship was seen between the gene expression of BCL2 or BCL2L1 and sensitivity to Bcl-2/Bcl-xL inhibition. These results demonstrate that breast cancers rapidly deploy Mcl-1 to promote cell survival, particularly when challenged with blockade of other Bcl-2 family members, warranting the continued development of Mcl-1–selective inhibitors for targeted tumor cell killing. Implications: Mcl-1 levels predict breast cancer response to inhibitors targeting other Bcl-2 family members, and demonstrate the key role played by Mcl-1 in resistance to this drug class. Mol Cancer Res; 15(3); 259–68. ©2016 AACR.
Oncogene | 2016
Meghan M. Morrison; Michelle M. Williams; David B. Vaught; Donna Hicks; J. Lim; Courtney McKernan; Luigi Aurisicchio; Gennaro Ciliberto; Catalina Simion; Christopher Sweeney; Rebecca S. Cook
ErbB3, a member of the ErbB family of receptor tyrosine kinases, is a potent activator of phosphatidyl inositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) signaling, driving tumor cell survival and therapeutic resistance in breast cancers. In luminal breast cancers, ErbB3 upregulation following treatment with the antiestrogen fulvestrant enhances PI3K/mTOR-mediated cell survival. However, the mechanism by which ErbB3 is upregulated in fulvestrant-treated cells is unknown. We found that ErbB3 protein levels and cell surface presentation were increased following fulvestrant treatment, focusing our attention on proteins that regulate ErbB3 at the cell surface, including Nrdp1, NEDD4 and LRIG1. Among these, only LRIG1 correlated positively with ERα, but inversely with ErbB3 in clinical breast cancer data sets. LRIG1, an estrogen-inducible ErbB downregulator, was decreased in a panel of fulvestrant-treated luminal breast cancer cells. Ectopic LRIG1 expression from an estrogen-independent promoter uncoupled LRIG1 from estrogen regulation, thus sustaining LRIG1 and maintaining low ErbB3 levels in fulvestrant-treated cells. An LRIG1 mutant lacking the ErbB3 interaction motif was insufficient to downregulate ErbB3. Importantly, LRIG1 overexpression improved fulvestrant-mediated growth inhibition, whereas cells expressing the LRIG1 mutant were poorly sensitive to fulvestrant, despite effective ERα downregulation. Consistent with these results, LRIG1 expression correlated positively with increased disease-free survival in antiestrogen-treated breast cancer patients. These data suggest that ERα-dependent expression of LRIG1 dampens ErbB3 signaling in luminal breast cancer cells, and by blocking ERα activity with fulvestrant, LRIG1 is decreased thus permitting ErbB3 accumulation, enhanced ErbB3 signaling to cell survival pathways and blunting therapeutic response to fulvestrant.
Cancer Research | 2015
Michelle M. Williams; Linus Lee; Violeta Sanchez; Meghan M. Morrison; Donna Hicks; Rebecca S. Cook
We found that 8.1% of luminal breast cancer cases curated by The Cancer Genome Atlas (TCGA), harbor gene amplification of anti-apoptotic Bcl-2 family members, warranting further study of anti-apoptotic Bcl-2 family proteins (A1, Bcl-2, Bcl-xL, Bcl-w and Mcl-1) in luminal breast cancers. A complex balance of pro- and anti-apoptotic Bcl-2 proteins guides activation versus repression of the intrinsic apoptotic pathway, with overexpression of anti-apoptotic factors tipping the balance towards cell survival. This mechanism is commonly used by cancers to evade apoptosis. We used the BH3-mimetic ABT-263 to inhibit Bcl-2, Bcl-xL and Bcl-w in a panel of human luminal breast cancer lines, causing only modest apoptosis in monolayer and growth inhibition in three-dimensional (3D) matrix. Expression and activity of Mcl-1, another anti-apoptotic Bcl-2 family member, was rapidly upregulated in response to ABT-263 through increased cap-dependent MCL1 translation. Mcl-1 knock-down decreased tumor cell growth and improved ABT-263-mediated tumor cell killing. Inhibition of cap-dependent translation using the mTOR inhibitor RAD001/everolimus or the EIF4 complex inhibitor 4E1RCat blocked Mcl-1 induction in ABT-263 treated cells, enhancing apoptosis and growth inhibition. In vivo, single agent ABT-263 was ineffective at reducing tumor growth in xenografted human breast cancers and in transgenic WAP-Myc luminal mammary tumors. However, RAD001 decreased Mcl-1 levels and decreased WAP-Myc tumor growth by 40%. These results demonstrate that heightened cap-dependent translation of Mcl-1 prevents therapeutically induced tumor cell killing in ABT-263 treated luminal tumors, highlighting the importance of Mcl-1 regulation in therapeutic resistance, and identifying Mcl-1 as a potential therapeutic target in luminal breast cancers. These studies suggest that targeted inhibition of Mcl-1 alone or in combination with other Bcl-2 family inhibitors will enhance tumor cell killing in luminal breast cancers. Citation Format: Michelle M. Williams, Linus Lee, Violeta Sanchez, Meghan M. Morrison, Donna Hicks, Rebecca S. Cook. Mcl-1-mediated resistance to ABT-263 is combated by mTOR inhibition in luminal breast cancers. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 5. doi:10.1158/1538-7445.AM2015-5
Breast Cancer Research | 2017
Michelle M. Williams; David B. Vaught; Meghan Morrison Joly; Donna Hicks; Violeta Sanchez; Philip Owens; Bushra Rahman; David L. Elion; Justin M. Balko; Rebecca S. Cook
BackgroundDuring pregnancy, as the mammary gland prepares for synthesis and delivery of milk to newborns, a luminal mammary epithelial cell (MEC) subpopulation proliferates rapidly in response to systemic hormonal cues that activate STAT5A. While the receptor tyrosine kinase ErbB4 is required for STAT5A activation in MECs during pregnancy, it is unclear how ErbB3, a heterodimeric partner of ErbB4 and activator of phosphatidyl inositol-3 kinase (PI3K) signaling, contributes to lactogenic expansion of the mammary gland.MethodsWe assessed mRNA expression levels by expression microarray of mouse mammary glands harvested throughout pregnancy and lactation. To study the role of ErbB3 in mammary gland lactogenesis, we used transgenic mice expressing WAP-driven Cre recombinase to generate a mouse model in which conditional ErbB3 ablation occurred specifically in alveolar mammary epithelial cells (aMECs).ResultsProfiling of RNA from mouse MECs isolated throughout pregnancy revealed robust Erbb3 induction during mid-to-late pregnancy, a time point when aMECs proliferate rapidly and undergo differentiation to support milk production. Litters nursed by ErbB3KO dams weighed significantly less when compared to litters nursed by ErbB3WT dams. Further analysis revealed substantially reduced epithelial content, decreased aMEC proliferation, and increased aMEC cell death during late pregnancy. Consistent with the potent ability of ErbB3 to activate cell survival through the PI3K/Akt pathway, we found impaired Akt phosphorylation in ErbB3KO samples, as well as impaired expression of STAT5A, a master regulator of lactogenesis. Constitutively active Akt rescued cell survival in ErbB3-depleted aMECs, but failed to restore STAT5A expression or activity. Interestingly, defects in growth and survival of ErbB3KO aMECs as well as Akt phosphorylation, STAT5A activity, and expression of milk-encoding genes observed in ErbB3KO MECs progressively improved between late pregnancy and lactation day 5. We found a compensatory upregulation of ErbB4 activity in ErbB3KO mammary glands. Enforced ErbB4 expression alleviated the consequences of ErbB3 ablation in aMECs, while combined ablation of both ErbB3 and ErbB4 exaggerated the phenotype.ConclusionsThese studies demonstrate that ErbB3, like ErbB4, enhances lactogenic expansion and differentiation of the mammary gland during pregnancy, through activation of Akt and STAT5A, two targets crucial for lactation.
Molecular Cancer Research | 2016
Michelle M. Williams; Linus Lee; Meghan M. Morrison; Courtney McKernan; Violeta Sanchez; Donna Hicks; Thomas Stricker; Rebecca S. Cook
In the context of cancer, the intrinsic apoptotic pathway is exploited to favor tumor cell survival through overexpression of anti-apoptotic Bcl-2 family members (Bcl-A1, Bcl-2, Bcl-xL, Bcl-w and Mcl-1). We investigated targeting of anti-apoptotic Bcl-2 proteins in a panel of human luminal breast cancer cell lines. Use of ABT-263, the Bcl-2/Bcl-xL/Bcl-w inhibitor, induced transient tumor cell killing and decreased tumor cell growth in only 1 of 4 cell lines in three dimensional (3D) cultures. Mcl-1 expression and activity were rapidly upregulated upon ABT-263 treatment, highlighting the compensatory nature of Mcl-1. In luminal breast cancers, Mcl-1 was the most frequently amplified anti-apoptotic Bcl-2 family member according to The Cancer Genome Atlas, while nearly 80% of the luminal breast tumor epithelium was positive for Mcl-1 in a tissue microarray. Thus, we hypothesized that Mcl-1 may be a dominant tumor cell survival factor in luminal breast cancers. Use of the mTOR inhibitor RAD001 (everolimus) to target Mcl-1 indirectly decreased tumor cell growth and increased tumor cell killing in 3 of 4 cell lines, as well as WAP-Myc luminal mammary tumors, demonstrating the effectiveness of Mcl-1 as a therapeutic target in breast cancers. While Mcl-1 inhibition alone did not affect growth of T47D cells, robust growth inhibition and tumor cell killing were seen in all cell lines upon inhibition of Mcl-1 using RAD001 or a EIF4 complex inhibitor (4E1RCat) in combination with ABT-263, suggesting that the induction of Mcl-1 upon ABT-263 treatment may be supported by increased cap-dependent translation. These results demonstrate that the sensitivity of luminal breast cancers to ABT-263 is enhanced by Mcl-1 inhibition, warranting further investigation into inhibition of anti-apoptotic Bcl-2 family proteins, in particular Mcl-1, as a clinical strategy to improve survival of patients with luminal breast cancers. Citation Format: Michelle M. Williams, Linus Lee, Meghan M. Morrison, Courtney McKernan, Violeta Sanchez, Donna Hicks, Thomas Stricker, Rebecca S. Cook. Mcl-1-mediated resistance to ABT-263 is combated by mTOR inhibition in luminal breast cancers. [abstract]. In: Proceedings of the AACR Special Conference on Advances in Breast Cancer Research; Oct 17-20, 2015; Bellevue, WA. Philadelphia (PA): AACR; Mol Cancer Res 2016;14(2_Suppl):Abstract nr B07.
Molecular Cancer Therapeutics | 2015
Michelle M. Williams; Linus Lee; Meghan M. Morrison; Andrew J. Williams; Violeta Sanchez; Donna Hicks; Rebecca S. Cook
In an effort to enhance therapeutic tumor cell killing in luminal breast cancers, we investigated the inhibition of the anti-apoptotic Bcl-2 family proteins Bcl-2, Bcl-xL and Mcl-1. Anti-apoptotic Bcl-2 proteins are inhibitors of the intrinsic apoptotic pathway that sequester and inhibit pro-apoptotic Bcl-2 family members. Sustained overexpression of anti-apoptotic Bcl-2 family members frequently occurs in cancers and supports tumor initiation, tumor progression, therapeutic resistance and poor patient survival. While only 2/324 and 1/324 luminal breast cancers curated by The Cancer Genome Atlas (TCGA) had gene amplification of BCL2 and BCL2L1 (encoding Bcl-xL) respectively, 21/324 ( MCL1 amplification. Wap-Myc transgenic mouse mammary tumors, which are highly enriched for the luminal A transcription signature, displayed profoundly increased Mcl-1 levels as compared to normal mammary tissue, suggesting a role for Mcl-1 in luminal breast cancer biology. Using a panel of four MCL1 -amplified breast cancer cell lines, we found that two were marginally sensitive to treatment with ABT-263, a BH3-mimetic that targets Bcl-2 and Bcl-xL. Conversely, ectopic overexpression of Mcl-1 decreased sensitivity to ABT-263. ABT-263 induced minimal cell killing in MCF7 xenografts and had no effect on tumor growth. Similarly, ABT-263 did not affect tumor growth in luminal-like Wap-Myc mouse mammary tumors. Thus, luminal breast cancer cells expressing increased Mcl-1 are poorly responsive to Bcl-2/Bcl-xL inhibition. Upregulation of Mcl-1 expression and activity, an established ABT-263-resistance mechanism in leukemias and lymphomas, was observed in MCL1 -amplified luminal breast cancer cell lines treated with ABT-263 in culture and in vivo. ABT-263 also increased the anti-apoptotic activity of Mcl-1 towards the pro-apoptotic Bcl-2 family member BIM, suggesting that Mcl-1 upregulation compensates for inhibition of Bcl-2 and Bcl-xL by ABT-263. There are currently no Mcl-1 specific inhibitors. However, Mcl-1 undergoes cap-dependent translation, and thus inhibition of cap-dependent translation has been proposed as a method to inhibit the protein expression of Mcl-1. Importantly, the mTOR pathway is required for efficient cap-dependent translation in many cancer cells. We found that the rapalogue RAD001/everolimus, an mTOR inhibitor, decreased Mcl-1 protein levels in MCL1 -amplified luminal breast cancer cell lines. Furthermore, RAD001 blocked Mcl-1 protein upregulation in response to ABT-263, producing increased cell killing and decreased cell growth in all MCL1 -amplified luminal breast cancer cell lines. Treatment of luminal Wap-Myc mammary tumors with RAD001 decreased tumor volume by 40%, while treatment with ABT-263 had no effect on tumor volume. These data suggest that Mcl-1 targeting may be superior to Bcl-2/Bcl-xL targeting in luminal breast cancers, particularly in luminal breast cancers with MCL1 -amplification. Furthermore, we have identified the mTOR pathway as a potential therapeutic target for blocking Mcl-1 expression in luminal breast cancers. Citation Format: Michelle M. Williams, Linus Lee, Meghan M. Morrison, Andrew J. Williams, Violeta Sanchez, Donna Hicks, Rebecca Cook. Targeting the anti-apoptotic protein Mcl-1 with the mTOR inhibitor RAD001 sensitizes luminal breast cancers to the Bcl-2/Bcl-xL inhibitor ABT-263. [abstract]. In: Proceedings of the AACR Special Conference: Targeting the PI3K-mTOR Network in Cancer; Sep 14-17, 2014; Philadelphia, PA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(7 Suppl):Abstract nr B09.