Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Plusquin is active.

Publication


Featured researches published by Michelle Plusquin.


Biometals | 2010

Cadmium stress: an oxidative challenge

Ann Cuypers; Michelle Plusquin; Tony Remans; Marijke Jozefczak; Els Keunen; Heidi Gielen; Kelly Opdenakker; Elke Munters; Tom Artois; Tim S. Nawrot; Jaco Vangronsveld; Kelly Smeets

At the cellular level, cadmium (Cd) induces both damaging and repair processes in which the cellular redox status plays a crucial role. Being not redox-active, Cd is unable to generate reactive oxygen species (ROS) directly, but Cd-induced oxidative stress is a common phenomenon observed in multiple studies. The current review gives an overview on Cd-induced ROS production and anti-oxidative defense in organisms under different Cd regimes. Moreover, the Cd-induced oxidative challenge is discussed with a focus on damage and signaling as downstream responses. Gathering these data, it was clear that oxidative stress related responses are affected during Cd stress, but the apparent discrepancies observed in between the different studies points towards the necessity to increase our knowledge on the spatial and temporal ROS signature under Cd stress. This information is essential in order to reveal the exact role of Cd-induced oxidative stress in the modulation of downstream responses under a diverse array of conditions.


Nature Methods | 2013

The need for transparency and good practices in the qPCR literature

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Carl T. Wittwer; Peter Schjerling; Philip J. R. Day; Mónica Abreu; Begoña Aguado; Jean-François Beaulieu; Anneleen Beckers; Sara Bogaert; John A. Browne; Fernando Carrasco-Ramiro; Liesbeth Ceelen; Kate L. Ciborowski; Pieter Cornillie; Stephanie Coulon; Ann Cuypers; Sara De Brouwer; Leentje De Ceuninck; Jurgen De Craene; Hélène De Naeyer; Ward De Spiegelaere

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


Heart | 2012

An epidemiological appraisal of the association between heart rate variability and particulate air pollution: a meta-analysis

Nicky Pieters; Michelle Plusquin; Bianca Cox; Michal Kicinski; Jaco Vangronsveld; Tim S. Nawrot

Objective Studies on the association between short-term exposure to ambient air pollution and heart rate variability (HRV) suggest that particulate matter (PM) exposure is associated with reductions in measures of HRV, but there is heterogeneity in the nature and magnitude of this association between studies. The authors performed a meta-analysis to determine how consistent this association is. Data source The authors searched the Pubmed citation database and Web of Knowledge to identify studies on HRV and PM. Study selection Of the epidemiologic studies reviewed, 29 provided sufficient details to be considered. The meta-analysis included 18667 subjects recruited from the population in surveys, studies from patient groups, and from occupationally exposed groups. Data extraction Two investigators read all papers and computerised all relevant information. Results The authors computed pooled estimates from a random-effects model. In the combined studies, an increase of 10 μg/m3 in PM2.5 was associated with significant reductions in the time-domain measurements, including low frequency (−1.66%, 95% CI −2.58% to −0.74%) and high frequency (−2.44%, 95% CI −3.76% to −1.12%) and in frequency-domain measurements, for SDNN (−0.12%, 95% CI −0.22% to −0.03%) and for rMSSD (−2.18%, 95% CI −3.33% to −1.03%). Funnel plots suggested that no publication bias was present and a sensitivity analysis confirmed the robustness of our combined estimates. Conclusion The meta-analysis supports an inverse relationship between HRV, a marker for a worse cardiovascular prognosis, and particulate air pollution.


Environmental Health Perspectives | 2015

In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study.

Nelly D. Saenen; Michelle Plusquin; Esmée Bijnens; Bram G. Janssen; Wilfried Gyselaers; Bianca Cox; Frans Fierens; Geert Molenberghs; Joris Penders; Karen Vrijens; Patrick De Boever; Tim S. Nawrot

Background Developmental processes in the placenta and the fetal brain are shaped by the same biological signals. Recent evidence suggests that adaptive responses of the placenta to the maternal environment may influence central nervous system development. Objectives We studied the association between in utero exposure to fine particle air pollution with a diameter ≤ 2.5 μm (PM2.5) and placental expression of genes implicated in neural development. Methods Expression of 10 target genes in the brain-derived neurotrophic factor (BDNF) signaling pathway were quantified in placental tissue of 90 mother–infant pairs from the ENVIRONAGE birth cohort using quantitative real-time polymerase chain reaction. Trimester-specific PM2.5 exposure levels were estimated for each mother’s home address using a spatiotemporal model. Mixed-effects models were used to evaluate the association between the target genes and PM2.5 exposure measured in different time windows of pregnancy. Results A 5-μg/m3 increase in residential PM2.5 exposure during the first trimester of pregnancy was associated with a 15.9% decrease [95% confidence interval (CI): –28.7, –3.2%, p = 0.015] in expression of placental BDNF at birth. The corresponding estimate for synapsin 1 (SYN1) was a 24.3% decrease (95% CI: –42.8, –5.8%, p = 0.011). Conclusions Placental expression of BDNF and SYN1, two genes implicated in normal neurodevelopmental trajectories, decreased with increasing in utero exposure to PM2.5. Future studies are needed to confirm our findings and evaluate the potential relevance of associations between PM2.5 and placental expression of BDNF and SYN1 on neurodevelopment. We provide the first molecular epidemiological evidence concerning associations between in utero fine particle air pollution exposure and the expression of genes that may influence neurodevelopmental processes. Citation Saenen ND, Plusquin M, Bijnens E, Janssen BG, Gyselaers W, Cox B, Fierens F, Molenberghs G, Penders J, Vrijens K, De Boever P, Nawrot TS. 2015. In utero fine particle air pollution and placental expression of genes in the brain-derived neurotrophic factor signaling pathway: an ENVIRONAGE Birth Cohort Study. Environ Health Perspect 123:834–840; http://dx.doi.org/10.1289/ehp.1408549


PLOS ONE | 2013

Decreased Mitochondrial DNA Content in Association with Exposure to Polycyclic Aromatic Hydrocarbons in House Dust during Wintertime: From a Population Enquiry to Cell Culture

Nicky Pieters; Gudrun Koppen; Karen Smeets; Dorota Napierska; Michelle Plusquin; Sofie De Prins; Hendrik Van De Weghe; Vera Nelen; Bianca Cox; Ann Cuypers; Peter Hoet; Greet Schoeters; Tim S. Nawrot

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that are formed in combustion processes. At the cellular level, exposure to PAHs causes oxidative stress and/or some of it congeners bind to DNA, which may interact with mitochondrial function. However, the influence of these pollutants on mitochondrial DNA (mtDNA) content remains largely unknown. We determined whether indoor exposure to PAHs is associated with mitochondrial damage as represented by blood mtDNA content. Blood mtDNA content (ratio mitochondrial/nuclear DNA copy number) was determined by real-time qPCR in 46 persons, both in winter and summer. Indoor PAH exposure was estimated by measuring PAHs in sedimented house dust, including 6 volatile PAHs and 8 non-volatile PAHs. Biomarkers of oxidative stress at the level of DNA and lipid peroxidation were measured. In addition to the epidemiologic enquiry, we exposed human TK6 cells during 24 h at various concentrations (range: 0 to 500 µM) of benzo(a)pyrene and determined mtDNA content. Mean blood mtDNA content averaged (±SD) 0.95±0.185. The median PAH content amounted 554.1 ng/g dust (25th–75th percentile: 390.7–767.3) and 1385ng/g dust (25th–75th percentile: 1000–1980) in winter for volatile and non-volatile PAHs respectively. Independent for gender, age, BMI and the consumption of grilled meat or fish, blood mtDNA content decreased by 9.85% (95% CI: −15.16 to −4.2; p = 0.002) for each doubling of non-volatile PAH content in the house dust in winter. The corresponding estimate for volatile PAHs was −7.3% (95% CI: −13.71 to −0.42; p = 0.04). Measurements of oxidative stress were not correlated with PAH exposure. During summer months no association was found between mtDNA content and PAH concentration. The ability of benzo(a)pyrene (range 0 µM to 500 µM) to lower mtDNA content was confirmed in vitro in human TK6 cells. Based on these findings, mtDNA content can be a target of PAH toxicity in humans.


American Journal of Epidemiology | 2015

Correlates of Peripheral Blood Mitochondrial DNA Content in a General Population

Judita Knez; Ellen Winckelmans; Michelle Plusquin; Lutgarde Thijs; Nicholas Cauwenberghs; Yu-Mei Gu; Jan A. Staessen; Tim S. Nawrot; Tatiana Kuznetsova

Accumulation of mitochondrial DNA (mtDNA) mutations leads to alterations of mitochondrial biogenesis and function that might produce a decrease in mtDNA content within cells. This implies that mtDNA content might be a potential biomarker associated with oxidative stress and inflammation. However, data on correlates of mtDNA content in a general population are sparse. Our goal in the present study was to describe in a randomly recruited population sample the distribution and determinants of peripheral blood mtDNA content. From 2009 to 2013, we examined 689 persons (50.4% women; mean age = 54.4 years) randomly selected from a Flemish population (Flemish Study on Environment, Genes, and Health Outcomes). Relative mtDNA copy number as compared with nuclear DNA was measured by quantitative real-time polymerase chain reaction in peripheral blood. There was a curvilinear relationship between relative mtDNA copy number and age. mtDNA content slightly increased until the fifth decade of life and declined in older subjects (Page2 = 0.0002). mtDNA content was significantly higher in women (P = 0.007) and increased with platelet count (P < 0.0001), whereas it was inversely associated with white blood cell count (P < 0.0001). We also observed lower mtDNA content in women using estroprogestogens (P = 0.044). This study demonstrated in a general population that peripheral blood mtDNA content is significantly associated with sex and age. Blood mtDNA content is also influenced by platelet and white blood cell counts and estroprogestogen intake. Further studies are required to clarify the impact of chronic inflammation and hormone therapy on mitochondrial function.


Oxidative Medicine and Cellular Longevity | 2015

Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation

Nicky Pirotte; An-Sofie Stevens; Susanna Fraguas; Michelle Plusquin; Andromeda Van Roten; Frank Van Belleghem; Rik Paesen; Marcel Ameloot; Francesc Cebrià; Tom Artois; Karen Smeets

Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.


Environmental Health Perspectives | 2015

Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a cross-sectional study

Nicky Pieters; Bram G. Janssen; Harrie Dewitte; Bianca Cox; Ann Cuypers; Wouter Lefebvre; Karen Smeets; Charlotte Vanpoucke; Michelle Plusquin; Tim S. Nawrot

Background: Telomere length and mitochondrial DNA (mtDNA) content are markers of aging and aging-related diseases. There is inconclusive evidence concerning the mechanistic effects of airborne particulate matter (PM) exposure on biomolecular markers of aging. Objective: The present study examines the association between short- and long-term PM exposure with telomere length and mtDNA content in the elderly and investigates to what extent this association is mediated by expression of genes playing a role in the telomere–mitochondrial axis of aging. Methods: Among 166 nonsmoking elderly participants, we used qPCR to measure telomere length and mtDNA content in leukocytes and RNA from whole blood to measure expression of SIRT1, TP53, PPARGC1A, PPARGC1B, NRF1, and NFE2L2. Associations between PM exposure and markers of aging were estimated using multivariable linear regression models adjusted for sex, age, BMI, socioeconomic status, statin use, past smoking status, white blood cell count, and percentage of neutrophils. Mediation analysis was performed to explore the role of age-related markers between the association of PM exposure and outcome. Annual PM2.5 exposure was calculated for each participant’s home address using a high-resolution spatial–temporal interpolation model. Results: Annual PM2.5 concentrations ranged from 15 to 23 μg/m3. A 5-μg/m3 increment in annual PM2.5 concentration was associated with a relative decrease of 16.8% (95% CI: –26.0%, –7.4%, p = 0.0005) in telomere length and a relative decrease of 25.7% (95% CI: –35.2%, –16.2%, p < 0.0001) in mtDNA content. Assuming causality, results of the mediation analysis indicated that SIRT1 mediated 19.5% and 22.5% of the estimated effect of PM2.5 exposure on telomere length and mtDNA content, respectively. Conclusions: Our findings suggest that the estimated effects of PM2.5 exposure on the telomere–mitochondrial axis of aging may play an important role in chronic health effects of PM2.5. Citation: Pieters N, Janssen BG, Dewitte H, Cox B, Cuypers A, Lefebvre W, Smeets K, Vanpoucke C, Plusquin M, Nawrot TS. 2016. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a cross-sectional study. Environ Health Perspect 124:943–950; http://dx.doi.org/10.1289/ehp.1509728


Environmental Health Perspectives | 2015

Blood Pressure and Same-Day Exposure to Air Pollution at School: Associations with Nano-Sized to Coarse PM in Children

Nicky Pieters; Gudrun Koppen; Martine Van Poppel; Sofie De Prins; Bianca Cox; Evi Dons; Vera Nelen; Luc Int Panis; Michelle Plusquin; Greet Schoeters; Tim S. Nawrot

Background Ultrafine particles (UFP) may contribute to the cardiovascular effects of particulate air pollution, partly because of their relatively efficient alveolar deposition. Objective In this study, we assessed associations between blood pressure and short-term exposure to air pollution in a population of schoolchildren. Methods In 130 children (6–12 years of age), blood pressure was determined during two periods (spring and fall 2011). We used mixed models to study the association between blood pressure and ambient concentrations of particulate matter and ultrafine particles measured in the schools’ playground. Results Independent of sex, age, height, and weight of the child, parental education, neighborhood socioeconomic status, fish consumption, heart rate, school, day of the week, season, wind speed, relative humidity, and temperature on the morning of examination, an interquartile range (860 particles/cm3) increase in nano-sized UFP fraction (20–30 nm) was associated with a 6.35 mmHg (95% CI: 1.56, 11.14; p = 0.01) increase in systolic blood pressure. For the total UFP fraction, systolic blood pressure was 0.79 mmHg (95% CI: 0.07, 1.51; p = 0.03) higher, but no effects on systolic blood pressure were found for the nano-sized fractions with a diameter > 100 nm, nor PM2.5, PMcoarse, and PM10. Diastolic blood pressure was not associated with any of the studied particulate mass fractions. Conclusion Children attending school on days with higher UFP concentrations (diameter < 100 nm) had higher systolic blood pressure. The association was dependent on UFP size, and there was no association with the PM2.5 mass concentration. Citation Pieters N, Koppen G, Van Poppel M, De Prins S, Cox B, Dons E, Nelen V, Int Panis L, Plusquin M, Schoeters G, Nawrot TS. 2015. Blood pressure and same-day exposure to air pollution at school: associations with nano-sized to coarse PM in children. Environ Health Perspect 123:737–742; http://dx.doi.org/10.1289/ehp.1408121


JAMA Pediatrics | 2017

Prenatal Air Pollution and Newborns' Predisposition to Accelerated Biological Aging

Dries S. Martens; Bianca Cox; Bram G. Janssen; Diana B. P. Clemente; Antonio Gasparrini; Charlotte Vanpoucke; Wouter Lefebvre; Harry A. Roels; Michelle Plusquin; Tim S. Nawrot

Importance Telomere length is a marker of biological aging that may provide a cellular memory of exposures to oxidative stress and inflammation. Telomere length at birth has been related to life expectancy. An association between prenatal air pollution exposure and telomere length at birth could provide new insights in the environmental influence on molecular longevity. Objective To assess the association of prenatal exposure to particulate matter (PM) with newborn telomere length as reflected by cord blood and placental telomere length. Design, Setting, and Participants In a prospective birth cohort (ENVIRONAGE [Environmental Influence on Ageing in Early Life]), a total of 730 mother-newborn pairs were recruited in Flanders, Belgium between February 2010 and December 2014, all with a singleton full-term birth (≥37 weeks of gestation). For statistical analysis, participants with full data on both cord blood and placental telomere lengths were included, resulting in a final study sample size of 641. Exposures Maternal residential PM2.5 (particles with an aerodynamic diameter ⩽2.5 &mgr;m) exposure during pregnancy. Main Outcomes and Measures In the newborns, cord blood and placental tissue relative telomere length were measured. Maternal residential PM2.5 exposure during pregnancy was estimated using a high-resolution spatial-temporal interpolation method. In distributed lag models, both cord blood and placental telomere length were associated with average weekly exposures to PM2.5 during pregnancy, allowing the identification of critical sensitive exposure windows. Results In 641 newborns, cord blood and placental telomere length were significantly and inversely associated with PM2.5 exposure during midgestation (weeks 12-25 for cord blood and weeks 15-27 for placenta). A 5-µg/m3 increment in PM2.5 exposure during the entire pregnancy was associated with 8.8% (95% CI, −14.1% to −3.1%) shorter cord blood leukocyte telomeres and 13.2% (95% CI, −19.3% to −6.7%) shorter placental telomere length. These associations were controlled for date of delivery, gestational age, maternal body mass index, maternal age, paternal age, newborn sex, newborn ethnicity, season of delivery, parity, maternal smoking status, maternal educational level, pregnancy complications, and ambient temperature. Conclusions and Relevance Mothers who were exposed to higher levels of PM2.5 gave birth to newborns with shorter telomere length. The observed telomere loss in newborns by prenatal air pollution exposure indicates less buffer for postnatal influences of factors decreasing telomere length during life. Therefore, improvements in air quality may promote molecular longevity from birth onward.

Collaboration


Dive into the Michelle Plusquin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan A. Staessen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wouter Lefebvre

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge