Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Smeets is active.

Publication


Featured researches published by Karen Smeets.


Planta | 2008

Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations

Tony Remans; Karen Smeets; Kelly Opdenakker; Dennis Mathijsen; Jaco Vangronsveld; Ann Cuypers

Accurate quantification by real-time RT-PCR relies on normalisation of the measured gene expression data. Normalisation with multiple reference genes is becoming the standard, but the best reference genes for gene expression studies within one organism may depend on the applied treatments or the organs and tissues studied. Ideally, reference genes should be evaluated in all experimental systems. A number of candidate reference genes for Arabidopsis have been proposed, which can be used as a starting point to evaluate their expression stability in individual experimental systems by available computer algorithms like geNorm and NormFinder. Using this approach, we identified the best three reference genes from a set of ten candidates, which included three traditional “housekeeping” genes, for normalisation of gene expression when roots and leaves of Arabidopsis thaliana are exposed to cadmium (Cd) and copper (Cu). The expression stabilities of AT5G15710 (F-box protein), AT2G28390 (SAND family protein) and AT5G08290 (mitosis protein YLS8) were the highest when considering the effect to the roots and shoots of Cd and Cu treatments. Even though the effect of Cd and excess Cu on the plants is very different, the same best reference genes were identified when considering Cd or Cu treatments separately. This suggests that these three genes may also be suitable when studying the gene expression after exposure of Arabidopsis thaliana to increased concentrations of other metals.


Journal of Plant Physiology | 2011

The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings.

Ann Cuypers; Karen Smeets; Joske Ruytinx; Kelly Opdenakker; Els Keunen; Tony Remans; Nele Horemans; Nathalie Vanhoudt; Suzy Van Sanden; Frank Van Belleghem; Yves Guisez; Jan V. Colpaert; Jaco Vangronsveld

The cellular redox state is an important determinant of metal phytotoxicity. In this study we investigated the influence of cadmium (Cd) and copper (Cu) stress on the cellular redox balance in relation to oxidative signalling and damage in Arabidopsis thaliana. Both metals were easily taken up by the roots, but the translocation to the aboveground parts was restricted to Cd stress. In the roots, Cu directly induced an oxidative burst, whereas enzymatic ROS (reactive oxygen species) production via NADPH oxidases seems important in oxidative stress caused by Cd. Furthermore, in the roots, the glutathione metabolism plays a crucial role in controlling the gene regulation of the antioxidative defence mechanism under Cd stress. Metal-specific alterations were also noticed with regard to the microRNA regulation of CuZnSOD gene expression in both roots and leaves. The appearance of lipid peroxidation is dual: it can be an indication of oxidative damage as well as an indication of oxidative signalling as lipoxygenases are induced after metal exposure and are initial enzymes in oxylipin biosynthesis. In conclusion, the metal-induced cellular redox imbalance is strongly dependent on the chemical properties of the metal and the plant organ considered. The stress intensity determines its involvement in downstream responses in relation to oxidative damage or signalling.


Nature Methods | 2013

The need for transparency and good practices in the qPCR literature

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Carl T. Wittwer; Peter Schjerling; Philip J. R. Day; Mónica Abreu; Begoña Aguado; Jean-François Beaulieu; Anneleen Beckers; Sara Bogaert; John A. Browne; Fernando Carrasco-Ramiro; Liesbeth Ceelen; Kate L. Ciborowski; Pieter Cornillie; Stephanie Coulon; Ann Cuypers; Sara De Brouwer; Leentje De Ceuninck; Jurgen De Craene; Hélène De Naeyer; Ward De Spiegelaere

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


Journal of Plant Physiology | 2009

Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context

Karen Smeets; Kelly Opdenakker; Tony Remans; Suzy Van Sanden; Frank Van Belleghem; Brahim Semane; Nele Horemans; Yves Guisez; Jaco Vangronsveld; Ann Cuypers

The physiological effects of Cd and Cu have been highlighted in several studies over the last years. At the cellular level, oxidative stress has been reported as a common mechanism in both stress situations. Nevertheless, because of differences in their redox-related properties, the origin of the stress and regulation of these effects can be very different. Our results show a specific Cd-related induction of NADPH oxidases, whereas both metals induced lipid peroxidation via the activation of lipoxygenases. With respect to the antioxidative defense system, metal-specific patterns of superoxide dismutases (SODs) were detected, whereas gene expression levels of the H2O2-quenching enzymes were equally induced by both metals. Because monometallic exposure is very unusual in real-world situations, the metal-specific effects were compared with the mechanisms induced when the plants are exposed to both metals simultaneously. Combined exposure to Cd and Cu enhanced some of the effects that were induced when only one metal was applied to the medium. Other specific monometallically induced effects, such as a copper zinc superoxide dismutase (CSD2) downregulation due to Cd, were also sustained in a multipollution context, irrespective of the other monometallic effects. Furthermore, specific multipollution effects were unravelled, as iron superoxide dismutase 1 (FSD1) upregulation in the leaves was significant only when both Cu and Cd were applied. Additional relationships between these treatments and the common and specific stress induction mechanisms are discussed.


Journal of Plant Physiology | 2010

Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress

Brahim Semane; Joke Dupae; Ann Cuypers; Jean-Paul Noben; Marjo Tuomainen; Arja Tervahauta; Sirpa Kärenlampi; Frank Van Belleghem; Karen Smeets; Jaco Vangronsveld

The leaf proteome of 3-week-old Arabidopsis thaliana seedlings exposed for 1 week to low, environmentally realistic Cd concentrations was investigated. The data indicated that at 1muMCd, A. thaliana plants adapted their metabolism to cope with the Cd exposure. As a result, only moderate protein changes were observed. However, at 10muMCd, severe stress was indicated by growth reduction and chlorosis of rosette leaves at the macroscopic level and by lipid peroxidation and enhanced peroxidase activity at the cellular level. Of the 730 reproducible proteins among all gels, 21 were statistically upregulated in response to Cd. These proteins can be functionally grouped into 5 classes: proteins involved in (1) oxidative stress response, (2) photosynthesis and energy production, (3) protein metabolism, (4) gene expression and finally, (5) proteins with various or unknown function. In order to provide greater insight into the mechanisms induced on Cd exposure, a working model is proposed.


Environmental Science & Technology | 2009

Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation.

Nele Weyens; Daniel van der Lelie; Tom Artois; Karen Smeets; Safiyh Taghavi; Lee Newman; Robert Carleer; Jaco Vangronsveld

Phytoremediation of volatile organic contaminants often proves not ideal because plants and their rhizosphere microbes only partially degrade these compounds. Consequently, plants undergo evapotranspiration that contaminates the ambient air and, thus, undermines the merits of phytoremediation. Under laboratory conditions, endophytic bacteria equipped with the appropriate degradation pathways can improve in planta degradation of volatile organic contaminants. However, several obstacles must be overcome before engineered endophytes will be successful in field-scale phytoremediation projects. Here we report the first in situ inoculation of poplar trees, growing on a TCE-contaminated site, with the TCE-degrading strain Pseudomonas putida W619-TCE. In situ bioaugmentation with strain W619-TCE reduced TCE evapotranspiration by 90% under field conditions. This encouraging result was achieved after the establishment and enrichment of P. putida W619-TCE as a poplar root endophyte and by further horizontal gene transfer of TCE metabolic activity to members of the poplars endogenous endophytic population. Since P. putida W619-TCE was engineered via horizontal gene transfer, its deliberate release is not restricted under European genetically modified organisms (GMO) regulations.


International Journal of Molecular Sciences | 2013

Cadmium-Induced Pathologies: Where Is the Oxidative Balance Lost (or Not)?

Olivier DeGheselle; Karen Smeets; Emmy Van Kerkhove; Ann Cuypers

Over the years, anthropogenic factors have led to cadmium (Cd) accumulation in the environment causing various health problems in humans. Although Cd is not a Fenton-like metal, it induces oxidative stress in various animal models via indirect mechanisms. The degree of Cd-induced oxidative stress depends on the dose, duration and frequency of Cd exposure. Also the presence or absence of serum in experimental conditions, type of cells and their antioxidant capacity, as well as the speciation of Cd are important determinants. At the cellular level, the Cd-induced oxidative stress either leads to oxidative damage or activates signal transduction pathways to initiate defence responses. This balance is important on how different organ systems respond to Cd stress and ultimately define the pathological outcome. In this review, we highlight the Cd-induced oxidant/antioxidant status as well as the damage versus signalling scenario in relation to Cd toxicity. Emphasis is addressed to Cd-induced pathologies of major target organs, including a section on cell proliferation and carcinogenesis. Furthermore, attention is paid to Cd-induced oxidative stress in undifferentiated stem cells, which can provide information for future therapies in preventing Cd-induced pathologies.


Environmental Health Perspectives | 2012

Placental Mitochondrial DNA Content and Particulate Air Pollution during in Utero Life

Bram G. Janssen; Elke Munters; Nicky Pieters; Karen Smeets; Bianca Cox; Ann Cuypers; Frans Fierens; Joris Penders; Jaco Vangronsveld; Wilfried Gyselaers; Tim S. Nawrot

Background: Studies emphasize the importance of particulate matter (PM) in the formation of reactive oxygen species and inflammation. We hypothesized that these processes can influence mitochondrial function of the placenta and fetus. Objective: We investigated the influence of PM10 exposure during pregnancy on the mitochondrial DNA content (mtDNA content) of the placenta and umbilical cord blood. Methods: DNA was extracted from placental tissue (n = 174) and umbilical cord leukocytes (n = 176). Relative mtDNA copy numbers (i.e., mtDNA content) were determined by real-time polymerase chain reaction. Multiple regression models were used to link mtDNA content and in utero exposure to PM10 over various time windows during pregnancy. Results: In multivariate-adjusted analysis, a 10-µg/m³ increase in PM10 exposure during the last month of pregnancy was associated with a 16.1% decrease [95% confidence interval (CI): –25.2, –6.0%, p = 0.003] in placental mtDNA content. The corresponding effect size for average PM10 exposure during the third trimester was 17.4% (95% CI: –31.8, –0.1%, p = 0.05). Furthermore, we found that each doubling in residential distance to major roads was associated with an increase in placental mtDNA content of 4.0% (95% CI: 0.4, 7.8%, p = 0.03). No association was found between cord blood mtDNA content and PM10 exposure. Conclusions: Prenatal PM10 exposure was associated with placental mitochondrial alterations, which may both reflect and intensify oxidative stress production. The potential health consequences of decreased placental mtDNA content in early life must be further elucidated.


International Journal of Phytoremediation | 2011

Short Rotation Coppice Culture of Willows and Poplars as Energy Crops on Metal Contaminated Agricultural Soils

Ann Ruttens; Jana Boulet; Nele Weyens; Karen Smeets; Kristin Adriaensen; Erik Meers; Stijn Van Slycken; Filip Tack; Linda Meiresonne; Theo Thewys; Nele Witters; Robert Carleer; Joke Dupae; Jaco Vangronsveld

Phytoremediation, more precisely phytoextraction, has been placed forward as an environmental friendly remediation technique, that can gradually reduce increased soil metal concentrations, in particular the bioavailable fractions. The aim of this study was to investigate the possibilities of growing willows and poplars under short rotation coppice (SRC) on an acid, poor, sandy metal contaminated soil, to combine in this way soil remediation by phytoextraction on one hand, and production of biomass for energy purposes on the other. Above ground biomass productivities were low for poplars to moderate for willows, which was not surprising, taking into account the soil conditions that are not very favorable for growth of these trees. Calculated phytoextraction efficiency was much longer for poplars than these for willows. We calculated that for phytoextraction in this particular case it would take at least 36 years to reach the legal threshold values for cadmium, but in combination with production of feedstock for bioenergy processes, this type of land use can offer an alternative income for local farmers. Based on the data of the first growing cycle, for this particular case, SRC of willows should be recommended.


Functional Plant Biology | 2010

Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper.

Tony Remans; Kelly Opdenakker; Karen Smeets; Dennis Mathijsen; Jaco Vangronsveld; Ann Cuypers

Reactive oxygen species produced by NADPH oxidase and oxylipins derived from lipoxygenase activity can signal various stress conditions and have been implicated when plants are exposed to heavy metals. Transcriptional profiling of the 10 NADPH oxidase and 6 lipoxygenase genes was performed after exposure of Arabidopsis thaliana wild-type and NADPH oxidase mutants to 5 µM CdSO4 or 2 µM CuSO4 for 24 h. Under these short exposures to environmentally realistic concentrations of Cd or Cu, plants modulate signalling networks that regulate the onset of adaptive responses. Metal-specific NADPH oxidase genes were upregulated by Cd but downregulated by Cu, and metal-specific lipoxygenase gene expression was observed only after Cu exposure. Genes that are responsive to both metals were upregulated and may be responsive to general oxidative stress. For all metal-responsive genes except RBOHD, distinct responses were observed between leaves and roots, which may be due to different stress intensities and signalling mechanisms. Mutation of NADPH oxidase genes had opposing effects on gene expression after Cd or Cu exposure. Upregulation of LOX1 and LOX6 in the roots after exposure to Cd depended on NADPH oxidase gene expression, whereas LOX3 and LOX6 expression was induced more strongly in NADPH oxidase mutants after Cu exposure. Furthermore, NADPH oxidases regulated their own expression level and that of other members of the gene family when exposed to Cd or Cu. The results suggest interplay between reactive oxygen species and oxylipin signalling under Cd or Cu stress, and are useful as a basis for genetic studies to unravel metal-specific signalling mechanisms.

Collaboration


Dive into the Karen Smeets's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge