Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle S. Johnson is active.

Publication


Featured researches published by Michelle S. Johnson.


Biochemical Journal | 2010

Prevention of diabetic nephropathy in Ins2(+/)⁻(AkitaJ) mice by the mitochondria-targeted therapy MitoQ.

Balu K. Chacko; Colin Reily; Anup Srivastava; Michelle S. Johnson; Yaozu Ye; Elena Ulasova; Anupam Agarwal; Kurt R. Zinn; Michael P. Murphy; B. Kalyanaraman; Victor M. Darley-Usmar

Mitochondrial production of ROS (reactive oxygen species) is thought to be associated with the cellular damage resulting from chronic exposure to high glucose in long-term diabetic patients. We hypothesized that a mitochondria-targeted antioxidant would prevent kidney damage in the Ins2+/−AkitaJ mouse model (Akita mice) of Type 1 diabetes. To test this we orally administered a mitochondria-targeted ubiquinone (MitoQ) over a 12-week period and assessed tubular and glomerular function. Fibrosis and pro-fibrotic signalling pathways were determined by immunohistochemical analysis, and mitochondria were isolated from the kidney for functional assessment. MitoQ treatment improved tubular and glomerular function in the Ins2+/−AkitaJ mice. MitoQ did not have a significant effect on plasma creatinine levels, but decreased urinary albumin levels to the same level as non-diabetic controls. Consistent with previous studies, renal mitochondrial function showed no significant change between any of the diabetic or wild-type groups. Importantly, interstitial fibrosis and glomerular damage were significantly reduced in the treated animals. The pro-fibrotic transcription factors phospho-Smad2/3 and β-catenin showed a nuclear accumulation in the Ins2+/−AkitaJ mice, which was prevented by MitoQ treatment. These results support the hypothesis that mitochondrially targeted therapies may be beneficial in the treatment of diabetic nephropathy. They also highlight a relatively unexplored aspect of mitochondrial ROS signalling in the control of fibrosis.


Redox biology | 2014

A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers

Philip A. Kramer; Saranya Ravi; Balu K. Chacko; Michelle S. Johnson; Victor M. Darley-Usmar

The assessment of metabolic function in cells isolated from human blood for treatment and diagnosis of disease is a new and important area of translational research. It is now becoming clear that a broad range of pathologies which present clinically with symptoms predominantly in one organ, such as the brain or kidney, also modulate mitochondrial energetics in platelets and leukocytes allowing these cells to serve as “the canary in the coal mine” for bioenergetic dysfunction. This opens up the possibility that circulating platelets and leukocytes can sense metabolic stress in patients and serve as biomarkers of mitochondrial dysfunction in human pathologies such as diabetes, neurodegeneration and cardiovascular disease. In this overview we will describe how the utilization of glycolysis and oxidative phosphorylation differs in platelets and leukocytes and discuss how they can be used in patient populations. Since it is clear that the metabolic programs between leukocytes and platelets are fundamentally distinct the measurement of mitochondrial function in distinct cell populations is necessary for translational research.


Free Radical Biology and Medicine | 2011

Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress

Lonnie Schneider; Samantha Giordano; Blake R. Zelickson; Michelle S. Johnson; Gloria A. Benavides; Xiaosen Ouyang; Naomi Fineberg; Victor M. Darley-Usmar; Jianhua Zhang

Cell differentiation is associated with changes in metabolism and function. Understanding these changes during differentiation is important in the context of stem cell research, cancer, and neurodegenerative diseases. An early event in neurodegenerative diseases is the alteration of mitochondrial function and increased oxidative stress. Studies using both undifferentiated and differentiated SH-SY5Y neuroblastoma cells have shown distinct responses to cellular stressors; however, the mechanisms remain unclear. We hypothesized that because the regulation of glycolysis and oxidative phosphorylation is modulated during cellular differentiation, this would change bioenergetic function and the response to oxidative stress. To test this, we used retinoic acid (RA) to induce differentiation of SH-SY5Y cells and assessed changes in cellular bioenergetics using extracellular flux analysis. After exposure to RA, the SH-SY5Y cells had an increased mitochondrial membrane potential, without changing mitochondrial number. Differentiated cells exhibited greater stimulation of mitochondrial respiration with uncoupling and an increased bioenergetic reserve capacity. The increased reserve capacity in the differentiated cells was suppressed by the inhibitor of glycolysis 2-deoxy-d-glucose. Furthermore, we found that differentiated cells were substantially more resistant to cytotoxicity and mitochondrial dysfunction induced by the reactive lipid species 4-hydroxynonenal or the reactive oxygen species generator 2,3-dimethoxy-1,4-naphthoquinone. We then analyzed the levels of selected mitochondrial proteins and found an increase in complex IV subunits, which we propose contributes to the increase in reserve capacity in the differentiated cells. Furthermore, we found an increase in MnSOD that could, at least in part, account for the increased resistance to oxidative stress. Our findings suggest that profound changes in mitochondrial metabolism and antioxidant defenses occur upon differentiation of neuroblastoma cells to a neuron-like phenotype.


Laboratory Investigation | 2013

Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood

Balu K. Chacko; Philip A. Kramer; Saranya Ravi; Michelle S. Johnson; Robert W. Hardy; Scott W. Ballinger; Victor M. Darley-Usmar

Peripheral blood mononuclear cells and platelets have long been recognized as having the potential to act as sensitive markers for mitochondrial dysfunction in a broad range of pathological conditions. However, the bioenergetic function of these cells has not been examined from the same donors, yet this is important for the selection of cell types for translational studies. Here, we demonstrate the measurement of cellular bioenergetics in isolated human monocytes, lymphocytes, and platelets, including the oxidative burst from neutrophils and monocytes from individual donors. With the exception of neutrophils, all cell types tested exhibited oxygen consumption that could be ascribed to oxidative phosphorylation with each having a distinct bioenergetic profile and distribution of respiratory chain proteins. In marked contrast, neutrophils were essentially unresponsive to mitochondrial respiratory inhibitors indicating that they have a minimal requirement for oxidative phosphorylation. In monocytes and neutrophils, we demonstrate the stimulation of the oxidative burst using phorbol 12-myristate 13-acetate and its validation in normal human subjects. Taken together, these data suggest that selection of cell type from blood cells is critical for assessing bioenergetic dysfunction and redox biology in translational research.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy.

Ashlee N. Higdon; Gloria A. Benavides; Balu K. Chacko; Xiaosen Ouyang; Michelle S. Johnson; Aimee Landar; Jianhua Zhang; Victor M. Darley-Usmar

The hemolysis of red blood cells and muscle damage results in the release of the heme proteins myoglobin, hemoglobin, and free heme into the vasculature. The mechanisms of heme toxicity are not clear but may involve lipid peroxidation, which we hypothesized would result in mitochondrial damage in endothelial cells. To test this, we used bovine aortic endothelial cells (BAEC) in culture and exposed them to hemin. Hemin led to mitochondrial dysfunction, activation of autophagy, mitophagy, and, at high concentrations, apoptosis. To detect whether hemin induced lipid peroxidation and damaged proteins, we used derivatives of arachidonic acid tagged with biotin or Bodipy (Bt-AA, BD-AA). We found that in cells treated with hemin, Bt-AA was oxidized and formed adducts with proteins, which were inhibited by α-tocopherol. Hemin-dependent mitochondrial dysfunction was also attenuated by α-tocopherol. Protein thiol modification and carbonyl formation occurred on exposure and was not inhibited by α-tocopherol. Supporting a protective role of autophagy, the inhibitor 3-methyladenine potentiated cell death. These data demonstrate that hemin mediates cytotoxicity through a mechanism which involves protein modification by oxidized lipids and other oxidants, decreased respiratory capacity, and a protective role for the autophagic process. Attenuation of lipid peroxidation may be able to preserve mitochondrial function in the endothelium and protect cells from heme-dependent toxicity.


Hepatology | 2011

Mitochondria‐targeted ubiquinone (MitoQ) decreases ethanol‐dependent micro and macro hepatosteatosis

Balu K. Chacko; Anup Srivastava; Michelle S. Johnson; Gloria A. Benavides; Mi Jung Chang; Yaozu Ye; Nirag Jhala; Michael P. Murphy; B. Kalyanaraman; Victor M. Darley-Usmar

Chronic alcohol‐induced liver disease results in inflammation, steatosis, and increased oxidative and nitrosative damage to the mitochondrion. We hypothesized that targeting an antioxidant to the mitochondria would prevent oxidative damage and attenuate the steatosis associated with alcoholic liver disease. To test this we investigated the effects of mitochondria‐targeted ubiquinone (MitoQ) (5 and 25 mg/kg/day for 4 weeks) in male Sprague‐Dawley rats consuming ethanol using the Lieber‐DeCarli diet with pair‐fed controls. Hepatic steatosis, 3‐nitrotyrosine (3‐NT), 4‐hydroxynonenal (4‐HNE), hypoxia inducible factor α (HIF1α), and the activity of the mitochondrial respiratory chain complexes were assessed. As reported previously, ethanol consumption resulted in hepatocyte ballooning, increased lipid accumulation in the form of micro and macrovesicular steatosis, and induction of cytochrome P450 2E1 (CYP2E1). MitoQ had a minor effect on the ethanol‐dependent decrease in mitochondrial respiratory chain proteins and their activities; however, it did decrease hepatic steatosis in ethanol‐consuming animals and prevented the ethanol‐induced formation of 3‐NT and 4‐HNE. Interestingly, MitoQ completely blocked the increase in HIF1α in all ethanol‐fed groups, which has previously been demonstrated in cell culture models and shown to be essential in ethanol‐dependent hepatosteatosis. Conclusion: These results demonstrate the antioxidant capacity of MitoQ in alleviating alcohol‐associated mitochondrial reactive oxygen species (ROS) and several downstream effects of ROS/RNS (reactive nitrogen species) production such as inhibiting protein nitration and protein aldehyde formation and specifically ROS‐dependent HIF1α stabilization. (HEPATOLOGY 2011;)


Biochemical Journal | 2006

Induction of the permeability transition and cytochrome c release by 15-deoxy-Δ12,14-prostaglandin J2 in mitochondria

Aimee Landar; Sruti Shiva; Anna-Liisa Levonen; Joo-Yeun Oh; Corinne Zaragoza; Michelle S. Johnson; Victor M. Darley-Usmar

The electrophilic lipid 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is known to allow adaptation to oxidative stress in cells at low concentrations and apoptosis at high levels. The mechanisms leading to adaptation involve the covalent modification of regulatory proteins, such as Keap1, and augmentation of antioxidant defences in the cell. The targets leading to apoptosis are less well defined, but mitochondria have been indirectly implicated in the mechanisms of cell death mediated by electrophilic lipids. To determine the potential of electrophilic cyclopentenones to induce pro-apoptotic effects in the mitochondrion, we used isolated liver mitochondria and demonstrated that 15d-PGJ2 promotes Ca2+-induced mitochondrial swelling and cytochrome c release. The mechanisms involved are consistent with direct modification of protein thiols in the mitochondrion, rather than secondary formation of reactive oxygen species or lipid peroxidation. Using proteomic analysis in combination with biotinylated 15d-PGJ2, we were able to identify 17 potential targets of the electrophile-responsive proteome in isolated liver mitochondria. Taken together, these results suggest that electrophilic lipid oxidation products can target a sub-proteome in mitochondria, and this in turn results in the transduction of the electrophilic stimulus to the cell through cytochrome c release.


Biochemical Journal | 2010

Mitochondrial targeting of the electrophilic lipid 15-deoxy-Delta12,14-prostaglandin J2 increases apoptotic efficacy via redox cell signalling mechanisms.

Anne R. Diers; Ashlee N. Higdon; Karina C. Ricart; Michelle S. Johnson; Anupam Agarwal; B. Kalyanaraman; Aimee Landar; Victor M. Darley-Usmar

Prototypical electrophiles such as the lipid 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) are well recognized for their therapeutic potential. Electrophiles modify signalling proteins in both the cytosol and mitochondrion, which results in diverse cellular responses, including cytoprotective effects and, at high doses, cell death. These findings led us to the hypothesis that targeting electrophiles to specific compartments in the cell could fine-tune their biological effects. To examine this, we synthesized a novel mitochondrially targeted analogue of 15d-PGJ2 (mito-15d-PGJ2) and tested its effects on redox cell signalling. Mito-15d-PGJ2 caused profound defects in mitochondrial bioenergetics and mitochondrial membrane depolarization when compared with 15d-PGJ2. We also found that mito-15d-PGJ2 modified different members of the electrophile-responsive proteome, was more potent at initiating intrinsic apoptotic cell death and was less effective than 15d-PGJ2 at up-regulating the expression of HO-1 (haem oxygenase-1) and glutathione. These results demonstrate the feasibility of modulating the biological effects of electrophiles by targeting the pharmacophore to mitochondria.


Biochimica et Biophysica Acta | 2011

Nitric oxide and hypoxia exacerbate alcohol-induced mitochondrial dysfunction in hepatocytes.

Blake R. Zelickson; Gloria A. Benavides; Michelle S. Johnson; Balu K. Chacko; Aparna Venkatraman; Aimee Landar; Angela M. Betancourt; Shannon M. Bailey; Victor M. Darley-Usmar

Chronic alcohol consumption results in hepatotoxicity, steatosis, hypoxia, increased expression of inducible nitric oxide synthase (iNOS) and decreased activities of mitochondrial respiratory enzymes. The impact of these changes on cellular respiration and their interaction in a cellular setting is not well understood. In the present study we tested the hypothesis that nitric oxide (NO)-dependent modulation of cellular respiration and the sensitivity to hypoxic stress is increased following chronic alcohol consumption. This is important since NO has been shown to regulate mitochondrial function through its interaction with cytochrome c oxidase, although at higher concentrations, and in combination with reactive oxygen species, can result in mitochondrial dysfunction. We found that hepatocytes isolated from alcohol-fed rats had decreased mitochondrial bioenergetic reserve capacity and were more sensitive to NO-dependent inhibition of respiration under room air and hypoxic conditions. We reasoned that this would result in greater hypoxic stress in vivo, and to test this, wild-type and iNOS(-/-) mice were administered alcohol-containing diets. Chronic alcohol consumption resulted in liver hypoxia in the wild-type mice and increased levels of hypoxia-inducible factor 1 α in the peri-venular region of the liver lobule. These effects were attenuated in the alcohol-fed iNOS(-/-) mice suggesting that increased mitochondrial sensitivity to NO and reactive nitrogen species in hepatocytes and iNOS plays a critical role in determining the response to hypoxic stress in vivo. These data support the concept that the combined effects of NO and ethanol contribute to an increased susceptibility to hypoxia and the deleterious effects of alcohol consumption on liver.


American Journal of Physiology-renal Physiology | 2013

Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells

Subhashini Bolisetty; Amie Traylor; Abolfazl Zarjou; Michelle S. Johnson; Gloria A. Benavides; Karina C. Ricart; Ravindra Boddu; Ray Moore; Aimee Landar; Stephen Barnes; Victor M. Darley-Usmar; Anupam Agarwal

Mitochondria are both a source and target of the actions of reactive oxygen species and possess a complex system of inter-related antioxidants that control redox signaling and protect against oxidative stress. Interestingly, the antioxidant enzyme heme oxygenase-1 (HO-1) is not present in the mitochondria despite the fact that the organelle is the site of heme synthesis and contains multiple heme proteins. Detoxification of heme is an important protective mechanism since the reaction of heme with hydrogen peroxide generates pro-oxidant ferryl species capable of propagating oxidative stress and ultimately cell death. We therefore hypothesized that a mitochondrially localized HO-1 would be cytoprotective. To test this, we generated a mitochondria-targeted HO-1 cell line by transfecting HEK293 cells with a plasmid construct containing the manganese superoxide dismutase mitochondria leader sequence fused to HO-1 cDNA (Mito-HO-1). Nontargeted HO-1-overexpressing cells were generated by transfecting HO-1 cDNA (HO-1) or empty vector (Vector). Mitochondrial localization of HO-1 with increased HO activity in the mitochondrial fraction of Mito-HO-1 cells was observed, but a significant decrease in the expression of heme-containing proteins occurred in these cells. Both cytosolic HO-1- and Mito-HO-1-expressing cells were protected against hypoxia-dependent cell death and loss of mitochondrial membrane potential, but these effects were more pronounced with Mito-HO-1. Furthermore, decrement in production of tricarboxylic acid cycle intermediates following hypoxia was significantly mitigated in Mito-HO-1 cells. These data suggest that specific mitochondrially targeted HO-1 under acute pathological conditions may have beneficial effects, but the selective advantage of long-term expression is constrained by a negative impact on the synthesis of heme-containing mitochondrial proteins.

Collaboration


Dive into the Michelle S. Johnson's collaboration.

Top Co-Authors

Avatar

Victor M. Darley-Usmar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Balu K. Chacko

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Aimee Landar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Gloria A. Benavides

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Saranya Ravi

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Philip A. Kramer

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Stephen Barnes

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jianhua Zhang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Tanecia Mitchell

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Louis J. Dell'Italia

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge