Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saranya Ravi is active.

Publication


Featured researches published by Saranya Ravi.


Redox biology | 2014

A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers

Philip A. Kramer; Saranya Ravi; Balu K. Chacko; Michelle S. Johnson; Victor M. Darley-Usmar

The assessment of metabolic function in cells isolated from human blood for treatment and diagnosis of disease is a new and important area of translational research. It is now becoming clear that a broad range of pathologies which present clinically with symptoms predominantly in one organ, such as the brain or kidney, also modulate mitochondrial energetics in platelets and leukocytes allowing these cells to serve as “the canary in the coal mine” for bioenergetic dysfunction. This opens up the possibility that circulating platelets and leukocytes can sense metabolic stress in patients and serve as biomarkers of mitochondrial dysfunction in human pathologies such as diabetes, neurodegeneration and cardiovascular disease. In this overview we will describe how the utilization of glycolysis and oxidative phosphorylation differs in platelets and leukocytes and discuss how they can be used in patient populations. Since it is clear that the metabolic programs between leukocytes and platelets are fundamentally distinct the measurement of mitochondrial function in distinct cell populations is necessary for translational research.


Clinical Science | 2014

The Bioenergetic Health Index: a new concept in mitochondrial translational research.

Balu K. Chacko; Philip A. Kramer; Saranya Ravi; Gloria A. Benavides; Tanecia Mitchell; Brian P. Dranka; David A. Ferrick; Ashwani K. Singal; Scott W. Ballinger; Shannon M. Bailey; Robert W. Hardy; Jianhua Zhang; Degui Zhi; Victor M. Darley-Usmar

Bioenergetics has become central to our understanding of pathological mechanisms, the development of new therapeutic strategies and as a biomarker for disease progression in neurodegeneration, diabetes, cancer and cardiovascular disease. A key concept is that the mitochondrion can act as the ‘canary in the coal mine’ by serving as an early warning of bioenergetic crisis in patient populations. We propose that new clinical tests to monitor changes in bioenergetics in patient populations are needed to take advantage of the early and sensitive ability of bioenergetics to determine severity and progression in complex and multifactorial diseases. With the recent development of high-throughput assays to measure cellular energetic function in the small number of cells that can be isolated from human blood these clinical tests are now feasible. We have shown that the sequential addition of well-characterized inhibitors of oxidative phosphorylation allows a bioenergetic profile to be measured in cells isolated from normal or pathological samples. From these data we propose that a single value–the Bioenergetic Health Index (BHI)–can be calculated to represent the patients composite mitochondrial profile for a selected cell type. In the present Hypothesis paper, we discuss how BHI could serve as a dynamic index of bioenergetic health and how it can be measured in platelets and leucocytes. We propose that, ultimately, BHI has the potential to be a new biomarker for assessing patient health with both prognostic and diagnostic value.


Laboratory Investigation | 2013

Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood

Balu K. Chacko; Philip A. Kramer; Saranya Ravi; Michelle S. Johnson; Robert W. Hardy; Scott W. Ballinger; Victor M. Darley-Usmar

Peripheral blood mononuclear cells and platelets have long been recognized as having the potential to act as sensitive markers for mitochondrial dysfunction in a broad range of pathological conditions. However, the bioenergetic function of these cells has not been examined from the same donors, yet this is important for the selection of cell types for translational studies. Here, we demonstrate the measurement of cellular bioenergetics in isolated human monocytes, lymphocytes, and platelets, including the oxidative burst from neutrophils and monocytes from individual donors. With the exception of neutrophils, all cell types tested exhibited oxygen consumption that could be ascribed to oxidative phosphorylation with each having a distinct bioenergetic profile and distribution of respiratory chain proteins. In marked contrast, neutrophils were essentially unresponsive to mitochondrial respiratory inhibitors indicating that they have a minimal requirement for oxidative phosphorylation. In monocytes and neutrophils, we demonstrate the stimulation of the oxidative burst using phorbol 12-myristate 13-acetate and its validation in normal human subjects. Taken together, these data suggest that selection of cell type from blood cells is critical for assessing bioenergetic dysfunction and redox biology in translational research.


Cell Metabolism | 2016

Mapping the Human Platelet Lipidome Reveals Cytosolic Phospholipase A2 as a Regulator of Mitochondrial Bioenergetics during Activation

David A. Slatter; Maceler Aldrovandi; Anne O’Connor; Stuart Michael Allen; Christopher J. Brasher; Robert C. Murphy; Sven Mecklemann; Saranya Ravi; Victor M. Darley-Usmar; Valerie B. O’Donnell

Summary Human platelets acutely increase mitochondrial energy generation following stimulation. Herein, a lipidomic circuit was uncovered whereby the substrates for this are exclusively provided by cPLA2, including multiple fatty acids and oxidized species that support energy generation via β-oxidation. This indicates that acute lipid membrane remodeling is required to support energetic demands during platelet activation. Phospholipase activity is linked to energy metabolism, revealing cPLA2 as a central regulator of both lipidomics and energy flux. Using a lipidomic approach (LipidArrays), we also estimated the total number of lipids in resting, thrombin-activated, and aspirinized platelets. Significant diversity between genetically unrelated individuals and a wealth of species was revealed. Resting platelets demonstrated ∼5,600 unique species, with only ∼50% being putatively identified. Thrombin elevated ∼900 lipids >2-fold with 86% newly appearing and 45% inhibited by aspirin supplementation, indicating COX-1 is required for major activation-dependent lipidomic fluxes. Many lipids were structurally identified. With ∼50% of the lipids being absent from databases, a major opportunity for mining lipids relevant to human health and disease is presented.


Journal of Visualized Experiments | 2014

Bioenergetics and the oxidative burst: protocols for the isolation and evaluation of human leukocytes and platelets.

Philip A. Kramer; Balu K. Chacko; Saranya Ravi; Michelle S. Johnson; Tanecia Mitchell; Victor M. Darley-Usmar

Mitochondrial dysfunction is known to play a significant role in a number of pathological conditions such as atherosclerosis, diabetes, septic shock, and neurodegenerative diseases but assessing changes in bioenergetic function in patients is challenging. Although diseases such as diabetes or atherosclerosis present clinically with specific organ impairment, the systemic components of the pathology, such as hyperglycemia or inflammation, can alter bioenergetic function in circulating leukocytes or platelets. This concept has been recognized for some time but its widespread application has been constrained by the large number of primary cells needed for bioenergetic analysis. This technical limitation has been overcome by combining the specificity of the magnetic bead isolation techniques, cell adhesion techniques, which allow cells to be attached without activation to microplates, and the sensitivity of new technologies designed for high throughput microplate respirometry. An example of this equipment is the extracellular flux analyzer. Such instrumentation typically uses oxygen and pH sensitive probes to measure rates of change in these parameters in adherent cells, which can then be related to metabolism. Here we detail the methods for the isolation and plating of monocytes, lymphocytes, neutrophils and platelets, without activation, from human blood and the analysis of mitochondrial bioenergetic function in these cells. In addition, we demonstrate how the oxidative burst in monocytes and neutrophils can also be measured in the same samples. Since these methods use only 8-20 ml human blood they have potential for monitoring reactive oxygen species generation and bioenergetics in a clinical setting.


Journal of Biological Chemistry | 2015

Metabolic Reprogramming Is Required for Myofibroblast Contractility and Differentiation

Karen Bernard; Naomi J. Logsdon; Saranya Ravi; Na Xie; Benjamin P. Persons; Sunad Rangarajan; Jaroslaw W. Zmijewski; Kasturi Mitra; Gang Liu; Victor M. Darley-Usmar; Victor J. Thannickal

Background: Myofibroblasts, by virtue of their functions, are highly energy-dependent. Results: TGF-β1-induced myofibroblast differentiation is associated with a metabolic reprogramming. This metabolic adaptation is essential to the expression of myofibroblast-related genes. Conclusion: Metabolic reprogramming is a hallmark of myofibroblast differentiation and is critical for its contractile function. Significance: This is the first report that links bioenergetics to myofibroblast activation. Contraction is crucial in maintaining the differentiated phenotype of myofibroblasts. Contraction is an energy-dependent mechanism that relies on the production of ATP by mitochondria and/or glycolysis. Although the role of mitochondrial biogenesis in the adaptive responses of skeletal muscle to exercise is well appreciated, mechanisms governing energetic adaptation of myofibroblasts are not well understood. Our study demonstrates induction of mitochondrial biogenesis and aerobic glycolysis in response to the differentiation-inducing factor transforming growth factor β1 (TGF-β1). This metabolic reprogramming is linked to the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Inhibition of p38 MAPK decreased accumulation of active peroxisome proliferator-activated receptor γ coactivator 1α in the nucleus and altered the translocation of mitochondrial transcription factor A to the mitochondria. Genetic or pharmacologic approaches that block mitochondrial biogenesis or glycolysis resulted in decreased contraction and reduced expression of TGF-β1-induced α-smooth muscle actin and collagen α-2(I) but not of fibronectin or collagen α-1(I). These data indicate a critical role for TGF-β1-induced metabolic reprogramming in regulating myofibroblast-specific contractile signaling and support the concept of integrating bioenergetics with cellular differentiation.


PLOS ONE | 2015

Metabolic Plasticity in Resting and Thrombin Activated Platelets

Saranya Ravi; Balu K. Chacko; Hirotaka Sawada; Philip A. Kramer; Michelle S. Johnson; Gloria A. Benavides; Valerie B. O’Donnell; Marisa B. Marques; Victor M. Darley-Usmar

Platelet thrombus formation includes several integrated processes involving aggregation, secretion of granules, release of arachidonic acid and clot retraction, but it is not clear which metabolic fuels are required to support these events. We hypothesized that there is flexibility in the fuels that can be utilized to serve the energetic and metabolic needs for resting and thrombin-dependent platelet aggregation. Using platelets from healthy human donors, we found that there was a rapid thrombin-dependent increase in oxidative phosphorylation which required both glutamine and fatty acids but not glucose. Inhibition of fatty acid oxidation or glutamine utilization could be compensated for by increased glycolytic flux. No evidence for significant mitochondrial dysfunction was found, and ATP/ADP ratios were maintained following the addition of thrombin, indicating the presence of functional and active mitochondrial oxidative phosphorylation during the early stages of aggregation. Interestingly, inhibition of fatty acid oxidation and glutaminolysis alone or in combination is not sufficient to prevent platelet aggregation, due to compensation from glycolysis, whereas inhibitors of glycolysis inhibited aggregation approximately 50%. The combined effects of inhibitors of glycolysis and oxidative phosphorylation were synergistic in the inhibition of platelet aggregation. In summary, both glycolysis and oxidative phosphorylation contribute to platelet metabolism in the resting and activated state, with fatty acid oxidation and to a smaller extent glutaminolysis contributing to the increased energy demand.


Journal of Biological Chemistry | 2013

Mitochondria and AMP-activated protein kinase-dependent mechanism of efferocytosis

Shaoning Jiang; Dae Won Park; William S. Stigler; Judy Creighton; Saranya Ravi; Victor M. Darley-Usmar; Jaroslaw W. Zmijewski

Background: Billions of cells undergo apoptosis in the human body every day, and the removal of dying cells (efferocytosis) is essential for tissue homeostasis. Results: Energy demand during efferocytosis results in AMPK activation followed by enhancement of macrophage chemokinesis and efferocytosis. Conclusion: The AMPK pathway is intimately linked to cellular bioenergetics and efferocytosis. Significance: A novel mechanism of mitochondria and AMPK-dependent stimulation of efferocytosis is proposed. Defective clearance of apoptotic cells is frequently associated with perpetuation of inflammatory conditions. Our results show a rapid activation of AMP-activated kinase (AMPK) in macrophages upon exposure to apoptotic cells or lysophosphatidylcholine, a specific phospholipid that is produced and released from dying cells. AMPK activation resulted from inhibition of mitochondrial oxygen consumption and ATP production and further depended on Ca2+ mobilization and mitochondrial reactive oxygen species generation. Once activated, AMPK increased microtubule synthesis and chemokinesis and provided adaptation to energy demand during tracking and engulfment. Uptake of apoptotic cells was increased in lungs of mice that received lysophosphatidylcholine. Furthermore, inhibition of AMPK diminished clearance of apoptotic thymocytes in vitro and in dexamethasone-treated mice. Taken together, we conclude that the mitochondrial AMPK axis is a sensor and enhancer of tracking and removal of apoptotic cell, processes crucial to resolution of inflammatory conditions and a return to tissue homeostasis.


Journal of Neurochemistry | 2014

Bioenergetic adaptation in response to autophagy regulators during rotenone exposure.

Samantha Giordano; Matthew Dodson; Saranya Ravi; Matthew Redmann; Xiaosen Ouyang; Victor M. Darley Usmar; Jianhua Zhang

Parkinsons disease is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing Parkinsons disease. We previously reported that in differentiated SH‐SY5Y cells, rotenone‐induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10–100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 h, caused cell death at 24 h with an LD50 of 10 nM. Overall, autophagic flux was decreased by 10 nM rotenone at both 2 and 24 h, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 h, suggesting that a mitochondrial‐specific lysosomal degradation pathway may be activated. Up‐regulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3‐methyladenine exacerbated cell death. Interestingly, while 3‐methyladenine exacerbated the rotenone‐dependent effects on bioenergetics, rapamycin did not prevent rotenone‐induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor.


Cellular Signalling | 2015

Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMP-activated protein kinase

Shaoning Jiang; Dae Won Park; Yong Gao; Saranya Ravi; Victor M. Darley-Usmar; Edward Abraham; Jaroslaw W. Zmijewski

Although activation of the AMP-activated protein kinase (AMPK) as well as of ubiquitin/proteasome degradative pathways play an essential role in the preservation of metabolic homeostasis, little is known concerning interactions between protein turnover and AMPK activity. In the present studies, we found that inhibition of the 26S proteasome resulted in rapid activation of AMPK in macrophages, epithelial and endothelial cells. This was associated with increased levels of non-degraded Ub-protein conjugates, in both cytosolic and mitochondrial fractions. Selective inhibitors of ubiquitination or siRNA-dependent knockdown of Ub-ligase E1 diminished AMPK activation in cells treated with MG132, a 26S proteasome inhibitor. In addition to inhibition of AMPK activation by Ub-ligase E1 inhibitors, deficiency in Park2 mitochondria-associated Ub-ligase E3 also reduced AMPK activation upon dissipation of mitochondrial membrane potential (Δψm). Accumulation of Ub-proteins was correlated with decreases in cellular bioenergetics, including mitochondria oxidative phosphorylation, and an increase in ROS formation. Antioxidants, such as N-acetyl-L-cysteine or mitochondria-targeted MitoTEMPO, effectively diminished MG132-induced AMPK activation. Glucose-dependent regulation of AMPK or AMPK-mediated autophagy was modulated by alterations in intracellular levels of Ub-protein conjugates. Our results indicate that accumulation of ubiquitinated proteins alter cellular bioenergetics and redox status, leading to AMPK activation.

Collaboration


Dive into the Saranya Ravi's collaboration.

Top Co-Authors

Avatar

Victor M. Darley-Usmar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Balu K. Chacko

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Philip A. Kramer

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Michelle S. Johnson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Tanecia Mitchell

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Stephen Barnes

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Gloria A. Benavides

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Hirotaka Sawada

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jaroslaw W. Zmijewski

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jianhua Zhang

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge