Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michinori Matsuo is active.

Publication


Featured researches published by Michinori Matsuo.


Journal of Lipid Research | 2006

Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1

Aya Kobayashi; Yasukazu Takanezawa; Takashi Hirata; Yuji Shimizu; Keiko Misasa; Noriyuki Kioka; Hiroyuki Arai; Kazumitsu Ueda; Michinori Matsuo

Cholesterol and phospholipids are essential to the body, but an excess of cholesterol or lipids is toxic and a risk factor for arteriosclerosis. ABCG1, one of the half-type ABC proteins, is thought to be involved in cholesterol homeostasis. To explore the role of ABCG1 in cholesterol homeostasis, we examined its subcellular localization and function. ABCG1 and ABCG1-K120M, a WalkerA lysine mutant, were localized to the plasma membrane in HEK293 cells stably expressing ABCG1 and formed a homodimer. A stable transformant expressing ABCG1 exhibited efflux of cholesterol and choline phospholipids in the presence of BSA, and the cholesterol efflux was enhanced by the presence of HDL, whereas cells expressing ABCG1-K120M did not, suggesting that ATP binding and/or hydrolysis is required for the efflux. Mass and TLC analyses revealed that ABCG1 and ABCA1 secrete several species of sphingomyelin (SM) and phosphatidylcholine (PC), and SMs were preferentially secreted by ABCG1, whereas PCs were preferentially secreted by ABCA1. These results suggest that ABCA1 and ABCG1 mediate the lipid efflux in different mechanisms, in which different species of phospholipids are secreted, and function coordinately in the removal of cholesterol and phospholipids from peripheral cells.


Journal of Biological Chemistry | 1999

ATP Binding Properties of the Nucleotide-binding Folds of SUR1

Michinori Matsuo; Noriyuki Kioka; Teruo Amachi; Kazumitsu Ueda

Pancreatic beta cell ATP-sensitive potassium (KATP) channels regulate glucose-induced insulin secretion. The activity of the KATP channel, composed of SUR1 and Kir6.2 subunits, is regulated by intracellular ATP and ADP, but the molecular mechanism is not clear. To distinguish the ATP binding properties of the two nucleotide-binding folds (NBFs) of SUR1, we prepared antibodies against NBF1 and NBF2, and the tryptic fragment of SUR1 was immunoprecipitated after photoaffinity labeling with 8-azido-[32P]ATP. The 35-kDa fragment was strongly labeled with 5 μm 8-azido-[32P]ATP even in the absence of Mg2+ and was immunoprecipitated with the antibody against NBF1. The 65-kDa fragment labeled with 100 μm 8-azido-[α-32P]ATP in the presence of Mg2+ was immunoprecipitated with anti-NBF2 and anti-C terminus antibodies. These results indicate that NBF1 of SUR1 binds 8-azido-ATP strongly in a magnesium-independent manner and that NBF2 binds 8-azido-ATP weakly in a magnesium-dependent manner. Furthermore, the 65-kDa tryptic fragment was not photoaffinity-labeled with 8-azido-[γ-32P]ATP at 37 °C, whereas the 35-kDa tryptic fragment was, suggesting that NBF2 of SUR1 may have ATPase activity and that NBF1 has none or little.


Journal of Biological Chemistry | 2006

Purification and ATPase Activity of Human ABCA1

Kei Takahashi; Yasuhisa Kimura; Noriyuki Kioka; Michinori Matsuo; Kazumitsu Ueda

ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein metabolism. Apolipoprotein A-I binds to ABCA1 and cellular cholesterol and phospholipids, mainly phosphatidylcholine, are loaded onto apoA-I to form pre-β high density lipoprotein (HDL). It is proposed that ABCA1 translocates phospholipids and cholesterol directly or indirectly to form pre-β HDL. To explore the mechanism of ABCA1-mediated pre-β HDL formation, we expressed human ABCA1 in insect Sf9 cells and purified it. Trypsin limited-digestion of purified ABCA1 in the detergent-soluble form suggested that it retained conformation similar to ABCA1 expressed in the membranes of human fibroblast WI-38 cells. Purified ABCA1 showed robust ATPase activity when reconstituted in liposomes made of synthetic phosphatidylcholine. ABCA1 showed lower ATPase activity when reconstituted in liposomes containing phosphatidylserine, phosphatidylethanolamine, or phosphatidylglycerol and also showed weak specificity in acyl chain species. ATPase activity was reduced by the addition of cholesterol and decreased by 25% in the presence of 20% cholesterol. β-Sitosterol and campesterol showed similar inhibitory effects but stigmasterol did not, suggesting structure-specific interaction between ABCA1 and sterols. Glibenclamide suppressed ABCA1 ATPase, suggesting that it inhibits apoA-I-dependent cellular cholesterol efflux by suppressing ABCA1 ATPase activity. These results suggest that the ATPase activity of ABCA1 is stimulated preferentially by phospholipids with choline head groups, phosphatidylcholine and sphingomyelin. This study with purified human ABCA1 provides the first biochemical basis of the mechanism for HDL formation mediated by ABCA1.


Journal of Biological Chemistry | 2000

Nonequivalent Nucleotide Trapping in the Two Nucleotide Binding Folds of the Human Multidrug Resistance Protein MRP1

Koh Nagata; Masahito Nishitani; Michinori Matsuo; Noriyuki Kioka; Teruo Amachi; Kazumitsu Ueda

Multidrug resistance protein 1 (MRP1) and P-glycoprotein, which are ATP-dependent multidrug efflux pumps and involved in multidrug resistance of tumor cells, are members of the ATP binding cassette proteins and contain two nucleotide-binding folds (NBFs). P-glycoprotein hydrolyzes ATP at both NBFs, and vanadate-induced nucleotide trapping occurs at both NBFs. We examined vanadate-induced nucleotide trapping in MRP1 stably expressed in KB cell membrane by using 8-azido-[α-32P]ATP. Vanadate-induced nucleotide trapping in MRP1 was found to be stimulated by reduced glutathione, glutathione disulfide, and etoposide and to be synergistically stimulated by the presence of etoposide and either glutathione. These results suggest that glutathione and etoposide interact with MRP1 at different sites and that those bindings cooperatively stimulate the nucleotide trapping. Mild trypsin digestion of MRP1 revealed that vanadate-induced nucleotide trapping mainly occurs at NBF2. Our results suggest that the two NBFs of MRP1 might be functionally nonequivalent.


Medical Molecular Morphology | 2005

ABC proteins : key molecules for lipid homeostasis

Kei Takahashi; Yasuhisa Kimura; Koh Nagata; Akitsugu Yamamoto; Michinori Matsuo; Kazumitsu Ueda

Forty-nine ABC protein genes exist on human chromosomes. Eukaryotic ABC proteins were originally recognized as drug efflux pumps involved in the multidrug resistance of cancer cells. However, it is now realized that one of their major physiological roles is cellular lipid transport and homeostasis, and their dysfunction is often associated with human diseases. ABCA1 and ABCA7 mediate the apolipoprotein-dependent formation of a high-density lipoprotein–cholesterol complex. ABCA3 is indispensable for pulmonary surfactant secretion. ABCG5 and ABCG8 are involved in the secretion of plant sterols and cholesterol into bile. However, the primary substrates and mechanism of action of these ABC proteins have not been precisely defined. In this review article, we first describe the general structure and functions of eukaryotic ABC proteins. The current model of ABCA1 functionality is then explained based on studies on a topological model, subcellular localization, apoA-I dependence of HDL formation, functional defects of Tangier disease mutants, and ATP hydrolysis of purified ABCA1. ABCA1 is supposed to function as a transporter of lipids as well as a receptor for apoA-I. ABCA3 is likely involved in accumulating phospholipids and cholesterol in lamellar bodies and in generating multivesicular structures.


Biochemical Journal | 2007

Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol

Yasuhisa Kimura; Noriyuki Kioka; Hiroaki Kato; Michinori Matsuo; Kazumitsu Ueda

MDR1 (multidrug resistance 1)/P-glycoprotein is an ATP-driven transporter which excretes a wide variety of structurally unrelated hydrophobic compounds from cells. It is suggested that drugs bind to MDR1 directly from the lipid bilayer and that cholesterol in the bilayer also interacts with MDR1. However, the effects of cholesterol on drug-MDR1 interactions are still unclear. To examine these effects, human MDR1 was expressed in insect cells and purified. The purified MDR1 protein was reconstituted in proteoliposomes containing various concentrations of cholesterol and enzymatic parameters of drug-stimulated ATPase were compared. Cholesterol directly binds to purified MDR1 in a detergent soluble form and the effects of cholesterol on drug-stimulated ATPase activity differ from one drug to another. The effects of cholesterol on K(m) values of drug-stimulated ATPase activity were strongly correlated with the molecular mass of that drug. Cholesterol increases the binding affinity of small drugs (molecular mass <500 Da), but does not affect that of drugs with a molecular mass of between 800 and 900 Da, and suppresses that of valinomycin (molecular mass >1000 Da). V(max) values for rhodamine B and paclitaxel are also increased by cholesterol, suggesting that cholesterol affects turnover as well as drug binding. Paclitaxel-stimulated ATPase activity of MDR1 is enhanced in the presence of stigmasterol, sitosterol and campesterol, as well as cholesterol, but not ergosterol. These results suggest that the drug-binding site of MDR1 may best fit drugs with a molecular mass of between 800 and 900 Da, and that cholesterol may support the recognition of smaller drugs by adjusting the drug-binding site and play an important role in the function of MDR1.


Journal of Biological Chemistry | 2008

Direct Interaction of Nuclear Liver X Receptor-β with ABCA1 Modulates Cholesterol Efflux

Masako Hozoji; Youichi Munehira; Yuika Ikeda; Makoto Makishima; Michinori Matsuo; Noriyuki Kioka; Kazumitsu Ueda

Cholesterol is an essential component of eukaryotic cells; at the same time, however, hyperaccumulation of cholesterol is harmful. Therefore, the ABCA1 gene, the product of which mediates secretion of cholesterol, is highly regulated at both the transcriptional and post-transcriptional levels. The transcription of ABCA1 is regulated by intracellular oxysterol concentration via the nuclear liver X receptor (LXR)/retinoid X receptor (RXR); once synthesized, ABCA1 protein turns over rapidly with a half-life of 1–2 h. Here, we show that the LXRβ/RXR complex binds directly to ABCA1 on the plasma membrane of macrophages and modulates cholesterol secretion. When cholesterol does not accumulate, ABCA1-LXRβ/RXR localizes on the plasma membrane, but is inert. When cholesterol accumulates, oxysterols bind to LXRβ, and the LXRβ/RXR complex dissociates from ABCA1, restoring ABCA1 activity and allowing apoA-I-dependent cholesterol secretion. LXRβ can exert an immediate post-translational response, as well as a rather slow transcriptional response, to changes in cellular cholesterol accumulation. Thus, we provide the first demonstration that protein-protein interaction suppresses ABCA1 function. Furthermore, we show that LXRβ is involved in both the transcriptional and post-transcriptional regulation of the ABCA1 transporter.


Journal of Biological Chemistry | 2007

Enhanced ApoA-I-dependent Cholesterol Efflux by ABCA1 from Sphingomyelin-deficient Chinese Hamster Ovary Cells

Kohjiro Nagao; Kei Takahashi; Kentaro Hanada; Noriyuki Kioka; Michinori Matsuo; Kazumitsu Ueda

ATP binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. It is proposed that ABCA1 reorganizes the plasma membrane and generates more loosely packed domains that facilitate apoA-I-dependent cholesterol efflux. In this study, we examined the effects of the cellular sphingomyelin level on HDL formation by ABCA1 by using a Chinese hamster ovary-K1 mutant cell line, LY-A, which has a missense mutation in the ceramide transfer protein CERT. When LY-A cells were cultured in Nutridoma-BO medium and sphingomyelin content was reduced, apoA-I-dependent cholesterol efflux by ABCA1 from LY-A cells increased 1.65-fold compared with that from LY-A/CERT cells stably transfected with human CERT cDNA. Exogenously added sphingomyelin significantly reduced the apoA-I-dependent efflux of cholesterol from LY-A cells, confirming that the decrease in sphingomyelin content in the plasma membrane stimulates cholesterol efflux by ABCA1. The amount of cholesterol available to cold methyl-β-cyclodextrin (MβCD) extraction from LY-A cells was increased by 40% by the expression of ABCA1 and was 1.6-fold higher than that from LY-A/CERT cells. This step in ABCA1 function, making cholesterol available to cold MβCD, was independent of apoA-I. These results suggest that the function of ABCA1 could be divided into two steps: (i) a flopping step to move phosphatidylcholine and cholesterol from the inner to outer leaflet of the plasma membrane, where cholesterol becomes available to cold MβCD extraction, and (ii) a loading step to load phosphatidylcholine and cholesterol onto apoA-I to generate HDL.


Journal of Biological Chemistry | 2002

ATP Binding/Hydrolysis by and Phosphorylation of Peroxisomal ATP-binding Cassette Proteins PMP70 (ABCD3) and Adrenoleukodystrophy Protein (ABCD1)

Arowu R. Tanaka; Kouichi Tanabe; Masashi Morita; Mikinori Kurisu; Yoshinori Kasiwayama; Michinori Matsuo; Noriyuki Kioka; Teruo Amachi; Tsuneo Imanaka; Kazumitsu Ueda

The 70-kDa peroxisomal membrane protein (PMP70) and adrenoleukodystrophy protein (ALDP), half-size ATP-binding cassette transporters, are involved in metabolic transport of long and very long chain fatty acids into peroxisomes. We examined the interaction of peroxisomal ATP-binding cassette transporters with ATP using rat liver peroxisomes. PMP70 was photoaffinity-labeled at similar efficiencies with 8-azido-[α-32P]ATP and 8-azido-[γ-32P]ATP when peroxisomes were incubated with these nucleotides at 37 °C in the absence Mg2+ and exposed to UV light without removing unbound nucleotides. The photoaffinity-labeled PMP70 and ALDP were co-immunoprecipitated together with other peroxisomal proteins, which also showed tight ATP binding properties. Addition of Mg2+ reduced the photoaffinity labeling of PMP70 with 8-azido-[γ-32P]ATP by 70%, whereas it reduced photoaffinity labeling with 8-azido-[α-32P]ATP by only 20%. However, two-thirds of nucleotide (probably ADP) was dissociated during removal of unbound nucleotides. These results suggest that ATP binds to PMP70 tightly in the absence of Mg2+, the bound ATP is hydrolyzed to ADP in the presence of Mg2+, and the produced ADP is dissociated from PMP70, which allows ATP hydrolysis turnover. Properties of photoaffinity labeling of ALDP were essentially similar to those of PMP70. Vanadate-induced nucleotide trapping in PMP70 and ALDP was not observed. PMP70 and ALDP were also phosphorylated at a tyrosine residue(s). ATP binding/hydrolysis by and phosphorylation of PMP70 and ALDP are involved in the regulation of fatty acid transport into peroxisomes.


Biochimica et Biophysica Acta | 1999

COMPARATIVE ASPECTS OF THE FUNCTION AND MECHANISM OF SUR1 AND MDR1 PROTEINS

Kazumitsu Ueda; Michinori Matsuo; Kouichi Tanabe; Katsuko Morita; Noriyuki Kioka; Teruo Amachi

ATP-binding cassette (ABC) superfamily proteins have divergent functions and can be classified as transporters, channels, and receptors, although their predicted secondary structures are very much alike. Prominent members include the sulfonylurea receptor (SUR1) and the multidrug transporter (MDR1). SUR1 is a subunit of the pancreatic beta-cell K(ATP) channel and plays a key role in the regulation of glucose-induced insulin secretion. SUR1 binds ATP at NBF1, and ADP at NBF2 and the two NBFs work cooperatively. The pore-forming subunit of the pancreatic beta-cell K(ATP) channel, Kir6.2, is a member of the inwardly rectifying K(+) channel family, and also binds ATP. In this article, we present a model in which the activity of the K(ATP) channel is determined by the balance of the action of ADP, which activates the channel through SUR1, and the action of ATP, which stabilizes the long closed state by binding to Kir6.2. The concentration of ATP could also affect the channel activity through binding to NBF1 of SUR1. MDR1, on the other hand, is an ATP-dependent efflux pump which extrudes cytotoxic drugs from cells before they can reach their intracellular targets, and in this way confers multidrug resistance to cancer cells. Both NBFs of MDR1 can hydrolyze nucleotides, and their ATPase activity is necessary for drug transport. The interaction of SUR1 with nucleotides is quite different from that of MDR1. Variations in the interactions with nucleotides of ABC proteins may account for the differences in their functions.

Collaboration


Dive into the Michinori Matsuo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge