Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuhisa Kimura is active.

Publication


Featured researches published by Yasuhisa Kimura.


Journal of Biological Chemistry | 2006

Purification and ATPase Activity of Human ABCA1

Kei Takahashi; Yasuhisa Kimura; Noriyuki Kioka; Michinori Matsuo; Kazumitsu Ueda

ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein metabolism. Apolipoprotein A-I binds to ABCA1 and cellular cholesterol and phospholipids, mainly phosphatidylcholine, are loaded onto apoA-I to form pre-β high density lipoprotein (HDL). It is proposed that ABCA1 translocates phospholipids and cholesterol directly or indirectly to form pre-β HDL. To explore the mechanism of ABCA1-mediated pre-β HDL formation, we expressed human ABCA1 in insect Sf9 cells and purified it. Trypsin limited-digestion of purified ABCA1 in the detergent-soluble form suggested that it retained conformation similar to ABCA1 expressed in the membranes of human fibroblast WI-38 cells. Purified ABCA1 showed robust ATPase activity when reconstituted in liposomes made of synthetic phosphatidylcholine. ABCA1 showed lower ATPase activity when reconstituted in liposomes containing phosphatidylserine, phosphatidylethanolamine, or phosphatidylglycerol and also showed weak specificity in acyl chain species. ATPase activity was reduced by the addition of cholesterol and decreased by 25% in the presence of 20% cholesterol. β-Sitosterol and campesterol showed similar inhibitory effects but stigmasterol did not, suggesting structure-specific interaction between ABCA1 and sterols. Glibenclamide suppressed ABCA1 ATPase, suggesting that it inhibits apoA-I-dependent cellular cholesterol efflux by suppressing ABCA1 ATPase activity. These results suggest that the ATPase activity of ABCA1 is stimulated preferentially by phospholipids with choline head groups, phosphatidylcholine and sphingomyelin. This study with purified human ABCA1 provides the first biochemical basis of the mechanism for HDL formation mediated by ABCA1.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog.

Atsushi Kodan; Tomohiro Yamaguchi; Toru Nakatsu; Keita Sakiyama; Christopher J. Hipolito; Akane Fujioka; Ryo Hirokane; Keiji Ikeguchi; Bunta Watanabe; Jun Hiratake; Yasuhisa Kimura; Hiroaki Suga; Kazumitsu Ueda; Hiroaki Kato

Significance P-glycoprotein exports various hydrophobic chemicals in an ATP-dependent manner, determines their absorption and distribution in the body, and is involved in multidrug resistance (MDR) in tumors. Understanding the mechanism of the multidrug transport is important for designing drugs of good bioavailability and efficient cancer chemotherapy. We determined the high-resolution crystal structures of a eukaryotic P-glycoprotein homolog and revealed the detailed architecture of its transmembrane domains, which contain an exit gate for substrates that opens to the extracellular side and two entrance gates that open to the intramembranous region and the cytosolic side. We propose a motion of the transmembrane domains powered by the association of two nucleotide-binding domains on ATP binding that is different from other transporters. P-glycoprotein is an ATP-binding cassette multidrug transporter that actively transports chemically diverse substrates across the lipid bilayer. The precise molecular mechanism underlying transport is not fully understood. Here, we present crystal structures of a eukaryotic P-glycoprotein homolog, CmABCB1 from Cyanidioschyzon merolae, in two forms: unbound at 2.6-Å resolution and bound to a unique allosteric inhibitor at 2.4-Å resolution. The inhibitor clamps the transmembrane helices from the outside, fixing the CmABCB1 structure in an inward-open conformation similar to the unbound structure, confirming that an outward-opening motion is required for ATP hydrolysis cycle. These structures, along with site-directed mutagenesis and transporter activity measurements, reveal the detailed architecture of the transporter, including a gate that opens to extracellular side and two gates that open to intramembranous region and the cytosolic side. We propose that the motion of the nucleotide-binding domain drives those gating apparatuses via two short intracellular helices, IH1 and IH2, and two transmembrane helices, TM2 and TM5.


Medical Molecular Morphology | 2005

ABC proteins : key molecules for lipid homeostasis

Kei Takahashi; Yasuhisa Kimura; Koh Nagata; Akitsugu Yamamoto; Michinori Matsuo; Kazumitsu Ueda

Forty-nine ABC protein genes exist on human chromosomes. Eukaryotic ABC proteins were originally recognized as drug efflux pumps involved in the multidrug resistance of cancer cells. However, it is now realized that one of their major physiological roles is cellular lipid transport and homeostasis, and their dysfunction is often associated with human diseases. ABCA1 and ABCA7 mediate the apolipoprotein-dependent formation of a high-density lipoprotein–cholesterol complex. ABCA3 is indispensable for pulmonary surfactant secretion. ABCG5 and ABCG8 are involved in the secretion of plant sterols and cholesterol into bile. However, the primary substrates and mechanism of action of these ABC proteins have not been precisely defined. In this review article, we first describe the general structure and functions of eukaryotic ABC proteins. The current model of ABCA1 functionality is then explained based on studies on a topological model, subcellular localization, apoA-I dependence of HDL formation, functional defects of Tangier disease mutants, and ATP hydrolysis of purified ABCA1. ABCA1 is supposed to function as a transporter of lipids as well as a receptor for apoA-I. ABCA3 is likely involved in accumulating phospholipids and cholesterol in lamellar bodies and in generating multivesicular structures.


Biochemical Journal | 2007

Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol

Yasuhisa Kimura; Noriyuki Kioka; Hiroaki Kato; Michinori Matsuo; Kazumitsu Ueda

MDR1 (multidrug resistance 1)/P-glycoprotein is an ATP-driven transporter which excretes a wide variety of structurally unrelated hydrophobic compounds from cells. It is suggested that drugs bind to MDR1 directly from the lipid bilayer and that cholesterol in the bilayer also interacts with MDR1. However, the effects of cholesterol on drug-MDR1 interactions are still unclear. To examine these effects, human MDR1 was expressed in insect cells and purified. The purified MDR1 protein was reconstituted in proteoliposomes containing various concentrations of cholesterol and enzymatic parameters of drug-stimulated ATPase were compared. Cholesterol directly binds to purified MDR1 in a detergent soluble form and the effects of cholesterol on drug-stimulated ATPase activity differ from one drug to another. The effects of cholesterol on K(m) values of drug-stimulated ATPase activity were strongly correlated with the molecular mass of that drug. Cholesterol increases the binding affinity of small drugs (molecular mass <500 Da), but does not affect that of drugs with a molecular mass of between 800 and 900 Da, and suppresses that of valinomycin (molecular mass >1000 Da). V(max) values for rhodamine B and paclitaxel are also increased by cholesterol, suggesting that cholesterol affects turnover as well as drug binding. Paclitaxel-stimulated ATPase activity of MDR1 is enhanced in the presence of stigmasterol, sitosterol and campesterol, as well as cholesterol, but not ergosterol. These results suggest that the drug-binding site of MDR1 may best fit drugs with a molecular mass of between 800 and 900 Da, and that cholesterol may support the recognition of smaller drugs by adjusting the drug-binding site and play an important role in the function of MDR1.


FEBS Letters | 2010

Lipid outward translocation by ABC proteins.

Kohjiro Nagao; Yasuhisa Kimura; Michinori Mastuo; Kazumitsu Ueda

In humans, about 50 ABC proteins play physiologically important roles. Many ABC proteins are involved in lipid outward translocation and lipid homeostasis in the body, and defects in their functions cause various diseases. However, the precise mechanisms of substrate transport remain unclear. In bacteria, several ABC proteins are involved in the transport of lipoproteins and lipopolysaccharides from the inner to outer membrane, and their functioning is a prerequisite for survival. Their functions can be divided into “flip‐flop” and “projection”. In this review, human ABC proteins are compared to bacterial proteins to elucidate their mechanisms.


Journal of Biological Chemistry | 2009

Formation of two intramolecular disulfide bonds is necessary for ApoA-I-dependent cholesterol efflux mediated by ABCA1.

Masako Hozoji; Yasuhisa Kimura; Noriyuki Kioka; Kazumitsu Ueda

ABCA1 plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. ABCA1 contains disulfide bond(s) between its N- and C-terminal halves, but it remains unclear whether disulfide bond formation is important for the functions of ABCA1 and which cysteines are involved in disulfide bond formation. To answer these questions, we constructed >30 ABCA1 mutants in which 16 extracellular domain (ECD) cysteines were replaced with serines and examined disulfide bond formation, apoA-I binding, and HDL formation in these mutants. From the single cysteine replacements, two cysteines (Cys75 and Cys309) in ECD1 were found to be essential for apoA-I binding. In contrast, in ECD2, only Cys1477 was found to be essential for HDL formation, and no single cysteine replacement impaired apoA-I binding. The concurrent replacement of two cysteines, Cys1463 and Cys1465, impaired apoA-I binding and HDL formation, suggesting that four of five extracellular cysteines (Cys75, Cys309, Cys1463, Cys1465, and Cys1477) are involved in these functions of ABCA1. Trypsin digestion experiments suggested that one disulfide bond is not sufficient and that two intramolecular disulfide bonds (between Cys75 and Cys309 in ECD1 and either Cys1463 or Cys1465 and Cys1477 in ECD2) are required for ABCA1 to be fully functional.


FEBS Journal | 2009

Functional role of the linker region in purified human P‐glycoprotein

Tomomi Sato; Atsushi Kodan; Yasuhisa Kimura; Kazumitsu Ueda; Toru Nakatsu; Hiroaki Kato

Human P‐glycoprotein (P‐gp), which conveys multidrug resistance, is an ATP‐dependent drug efflux pump that transports a wide variety of structurally unrelated compounds out of cells. P‐gp possesses a ‘linker region’ of ∼ 75 amino acids that connects two homologous halves, each of which contain a transmembrane domain followed by a nucleotide‐binding domain. To investigate the role of the linker region, purified human P‐gp was cleaved by proteases at the linker region and then compared with native P‐gp. Based on a verapamil‐stimulated ATP hydrolase assay, size‐exclusion chromatography analysis and a thermo‐stability assay, cleavage of the P‐gp linker did not directly affect the preservation of the overall structure or the catalytic process in ATP hydrolysis. However, linker cleavage increased the kcat values both with substrate (ksub) and without substrate (kbasal), but decreased the ksub/kbasal values of all 10 tested substrates. The former result indicates that cleaving the linker activates P‐gp, while the latter result suggests that the linker region maintains the tightness of coupling between the ATP hydrolase reaction and substrate recognition. Inspection of structures of the P‐gp homolog, MsbA, suggests that linker‐cleaved P‐gp has increased ATP hydrolase activity because the linker interferes with a conformational change that accompanies the ATP hydrolase reaction. Moreover, linker cleavage affected the specificity constants [ksub/Km(D)] for some substrates (i.e. linker cleavage probably shifts the substrate specificity profile of P‐gp). Thus, this result also suggests that the linker region regulates the inherent substrate specificity of P‐gp.


Current Drug Metabolism | 2004

(Section A: Molecular, Structural, and Cellular Biology of Drug Transporters) ATP Hydrolysis-Dependent Multidrug Efflux Transporter: MDR1 / Pglycoprotein

Yasuhisa Kimura; Michinori Matsuo; Kei Takahashi; Tohru Saeki; Noriyuki Kioka; Teruo Amachi; Kazumitsu Ueda

P-glycoprotein / MDR1 was the first member of the ATP-binding cassette (ABC) transporter superfamily to be identified in a eukaryote. In eukaryotes, ABC proteins can be classified into three major groups based on function: transporters, regulators, and channels. MDR1 / P-glycoprotein is a prominent member of eukaryotic export-type ABC proteins. MDR1 / P-glycoprotein extrudes a very wide array of structurally dissimilar compounds, all lipophilic and ranging in mass from approximately 300 to 2000 Da, including cytotoxic drugs that act on different intracellular targets, steroid hormones, peptide antibiotics, immunosuppressive agents, calcium channel blockers, and others. Nucleotide binding and hydrolysis by MDR1 / P-glycorptrotein is tightly coupled with its function, substrate transport. ATP binding and hydrolysis were extensively analyzed with the purified MDR1 / P-glycoprotein. The vanadate-induced nucleotide trapping method was also applied to study the hydrolysis of ATP by MDR1 / P-glycoprotein. When MDR1 hydrolyzes ATP in the presence of excess orthovanadate, an analog of inorganic phosphate, it forms a metastable complex after hydrolysis. Using this method, MDR1 / P-glycoprotein can be specifically photoaffinity-labeled in the membrane, if 8-azido-[α32P]ATP is used as ATP. Visualization of the structure, as well as the biochemical data, is needed to fully understand how MDR1 / Pglycoprotein recognizes such a variety of compounds and how it carries its substrates across the membrane using the energy from ATP hydrolysis. To do so, large amounts of pure and stable proteins are required. Heterologous expression systems, which have been used to express P-glycoprotein, are also described.


Journal of Cell Science | 2014

The role of the interaction of the vinculin proline-rich linker region with vinexin α in sensing the stiffness of the extracellular matrix.

Hiroshi Yamashita; Takafumi Ichikawa; Daisuke Matsuyama; Yasuhisa Kimura; Kazumitsu Ueda; Susan W. Craig; Ichiro Harada; Noriyuki Kioka

ABSTRACT Although extracellular matrix (ECM) stiffness is an important aspect of the extracellular microenvironment and is known to direct the lineage specification of stem cells and affect cancer progression, the molecular mechanisms that sense ECM stiffness have not yet been elucidated. In this study, we show that the proline-rich linker (PRL) region of vinculin and the PRL-region-binding protein vinexin are involved in sensing the stiffness of ECM substrates. A rigid substrate increases the level of cytoskeleton-associated vinculin, and the fraction of vinculin stably localizing at focal adhesions (FAs) is larger on rigid ECM than on soft ECM. Mutations in the PRL region or the depletion of vinexin expression impair these responses to ECM stiffness. Furthermore, vinexin depletion impairs the stiffness-dependent regulation of cell migration. These results suggest that the interaction of the PRL region of vinculin with vinexin &agr; plays a crucial role in sensing ECM stiffness and in mechanotransduction.


Journal of Lipid Research | 2012

ATP hydrolysis-dependent conformational changes in the extracellular domain of ABCA1 are associated with apoA-I binding

Kohjiro Nagao; Kei Takahashi; Yuya Azuma; Mie Takada; Yasuhisa Kimura; Michinori Matsuo; Noriyuki Kioka; Kazumitsu Ueda

ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high-density lipoprotein (HDL) metabolism. Although it is predicted that apolipoprotein A-I (apoA-I) directly binds to ABCA1, the physiological importance of this interaction is still controversial and the conformation required for apoA-I binding is unclear. In this study, the role of the two nucleotide-binding domains (NBD) of ABCA1 in apoA-I binding was determined by inserting a TEV protease recognition sequence in the linker region of ABCA1. Analyses of ATP binding and occlusion to wild-type ABCA1 and various NBD mutants revealed that ATP binds equally to both NBDs and is hydrolyzed at both NBDs. The interaction with apoA-I and the apoA-I-dependent cholesterol efflux required not only ATP binding but also hydrolysis in both NBDs. NBD mutations and cellular ATP depletion decreased the accessibility of antibodies to a hemagglutinin (HA) epitope that was inserted at position 443 in the extracellular domain (ECD), suggesting that the conformation of ECDs is altered by ATP hydrolysis at both NBDs. These results suggest that ATP hydrolysis at both NBDs induces conformational changes in the ECDs, which are associated with apoA-I binding and cholesterol efflux.

Collaboration


Dive into the Yasuhisa Kimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge