Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michio Takeda is active.

Publication


Featured researches published by Michio Takeda.


Nature | 2002

Molecular identification of a renal urate–anion exchanger that regulates blood urate levels

Atsushi Enomoto; Hiroaki Kimura; Arthit Chairoungdua; Yasuhiro Shigeta; Promsuk Jutabha; Seok Ho Cha; Makoto Hosoyamada; Michio Takeda; Takashi Sekine; Takashi Igarashi; Hirotaka Matsuo; Yuichi Kikuchi; Takashi Oda; Kimiyoshi Ichida; Tatsuo Hosoya; Kaoru Shimokata; Toshimitsu Niwa; Yoshikatsu Kanai; Hitoshi Endou

Urate, a naturally occurring product of purine metabolism, is a scavenger of biological oxidants implicated in numerous disease processes, as demonstrated by its capacity of neuroprotection. It is present at higher levels in human blood (200–500 µM) than in other mammals, because humans have an effective renal urate reabsorption system, despite their evolutionary loss of hepatic uricase by mutational silencing. The molecular basis for urate handling in the human kidney remains unclear because of difficulties in understanding diverse urate transport systems and species differences. Here we identify the long-hypothesized urate transporter in the human kidney (URAT1, encoded by SLC22A12), a urate–anion exchanger regulating blood urate levels and targeted by uricosuric and antiuricosuric agents (which affect excretion of uric acid). Moreover, we provide evidence that patients with idiopathic renal hypouricaemia (lack of blood uric acid) have defects in SLC22A12. Identification of URAT1 should provide insights into the nature of urate homeostasis, as well as lead to the development of better agents against hyperuricaemia, a disadvantage concomitant with human evolution.


Journal of The American Society of Nephrology | 2002

Role of Organic Anion Transporters in the Tubular Transport of Indoxyl Sulfate and the Induction of its Nephrotoxicity

Atsushi Enomoto; Michio Takeda; Akihiro Tojo; Takashi Sekine; Seok Ho Cha; Suparat Khamdang; Fumio Takayama; Isao Aoyama; Sakurako Nakamura; Hitoshi Endou; Toshimitsu Niwa

In uremic patients, various uremic toxins are accumulated and exert various biologic effects on uremia. Indoxyl sulfate (IS) is one of uremic toxins that is derived from dietary protein, and serum levels of IS are markedly increased in both uremic rats and patients. It has been previously reported that the accumulation of IS promotes the progression of chronic renal failure (CRF). This study demonstrates the role of rat organic anion transporters (rOATs) in the transport of IS and the induction of its nephrotoxicity. The administration of IS to 5/6-nephrectomized rats caused a faster progression of CRF, and immunohistochemistry revealed that IS was detected in the proximal and distal tubules where rOAT1 (proximal tubules) and/or rOAT3 (proximal and distal tubules) were also shown to be localized. In in vitro study, the proximal tubular cells derived from mouse that stably express rOAT1 (S2 rOAT1) and rOAT3 (S2 rOAT3) were established. IS inhibited organic anion uptake by S2 rOAT1 and S2 rOAT3, and the Ki values were 34.2 and 74.4 microM, respectively. Compared with mock, S2 rOAT1 and S2 rOAT3 exhibited higher levels of IS uptake, which was inhibited by probenecid and cilastatin, organic anion transport inhibitors. The addition of IS induced a decrease in the viability of S2 rOAT1 and S2 rOAT3 as compared with the mock, which was rescued by probenecid. These results suggest that rOAT1 and rOAT3 play an important role in the transcellular transport of IS and the induction of its nephrotoxicity.


Biochimica et Biophysica Acta | 2002

Role of human organic anion transporter 4 in the transport of ochratoxin A.

Ellappan Babu; Michio Takeda; Shinichi Narikawa; Yukari Kobayashi; Atsushi Enomoto; Akihiro Tojo; Seok Ho Cha; Takashi Sekine; Dhanapal Sakthisekaran; Hitoshi Endou

The purpose of this study was to investigate the characteristics of ochratoxin A (OTA) transport by multispecific human organic anion transporter 4 (hOAT4) using mouse proximal tubule cells stably transfected with hOAT4 (S(2) hOAT4). Immunohistochemical analysis revealed that hOAT4 protein was localized to the apical side of the proximal tubule. S(2) hOAT4 expressed hOAT4 protein in the apical side as well as basolateral side and the cells were cultured on the plastic dish for experiments. S(2) hOAT4 exhibited a time- and concentration-dependent, and a saturable increase in OTA uptake, with an apparent K(m) value of 22.9+/-2.44 microM. The OTA uptakes were inhibited by several substrates for the OATs. Probenecid, piroxicam, octanoate and citrinin inhibited OTA uptake by hOAT4 in a competitive manner (K(i)=44.4-336.4 microM), with the following order of potency: probenecid > piroxicam > octanoate >citrinin. The efflux of OTA by S(2) hOAT4 was higher than that by mock. Addition of OTA resulted in slight decrease in viability of S(2) hOAT4 compared with mock. These results indicate that hOAT4 mediates the high-affinity transport of OTA on the apical side of the proximal tubule, whereas the transport characteristics of OTA are distinct from those by basolateral OATs.


European Journal of Pharmacology | 2001

Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters

Michio Takeda; Shinichi Narikawa; Makoto Hosoyamada; Seok Ho Cha; Takashi Sekine; Hitoshi Endou

The organic anion transport system is involved in the tubular excretion of various clinically important drugs. The purpose of this study was to characterize the effects of various organic anion transport inhibitors on organic anion transport using proximal tubule cells stably expressing human organic anion transporter 1 (human-OAT1) and human-OAT3, which are localized to the basolateral membrane of the proximal tubule. Organic anion transport inhibitors including betamipron, cilastatin, KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine) and probenecid significantly inhibited human-OAT1- and human-OAT3-mediated organic anion uptake in a dose-dependent manner. Kinetic analyses revealed that these inhibitions were competitive. The Ki values of betamipron, cilastatin, KW-3902 and probencid for human-OAT1 were 23.6, 1470, 7.82 and 12.1 microM, whereas those for human-OAT3 were 48.3, 231, 3.70 and 9.0 microM. These results suggest that betamipron and probenecid could inhibit both human-OAT1- and human-OAT3-mediated organic anion transport in vivo, whereas cilastatin could inhibit only human-OAT3-mediated one. In contrast, KW-3902 did not exert the effects of significance, whereas KW-3902 was the most potent.


European Journal of Pharmacology | 2002

Interaction of human organic anion transporters with various cephalosporin antibiotics.

Michio Takeda; Ellappan Babu; Shinichi Narikawa; Hitoshi Endou

Cephalosporin antibiotics are thought to be excreted into the urine via organic anion transporters (OATs). The purpose of this study was to elucidate the interaction of human-OATs with various cephalosporin antibiotics, using proximal tubule cells stably expressing human-OAT1, human-OAT3 and human-OAT4. Human-OAT1 and human-OAT3 are localized to the basolateral side of the proximal tubule, whereas human-OAT4 is localized to the apical side. The cephalosporin antibiotics tested were cephalothin, cefoperazone, cefazolin, ceftriaxone, cephaloridine, cefotaxime, cefadroxil and cefamandole. All of these cephalosporin antibiotics significantly inhibited organic anion uptake mediated by human-OAT1, human-OAT3 and human-OAT4. Kinetic analysis revealed that these inhibitions were competitive. The inhibition constant (K(i)) values of cefoperazone, cefazolin, ceftriaxone and cephaloridine for human-OAT1 were much lower than those for human-OAT3 and human-OAT4, whereas the K(i) values of cephalothin and cefotaxime for human-OAT3 were much lower than those for human-OAT1 and human-OAT4. Human-OAT4 mediated the bidirectional transport of estrone sulfate, an optimal substrate for human-OAT4. These results suggest that human-OAT1, human-OAT3 and human-OAT4 interact with various cephalosporin antibiotics, and that human-OAT1 and human-OAT3 play a distinct role in the basolateral uptake of cephalosporin antibiotics. Since the K(i) value of cephaloridine for human-OAT4-mediated organic uptake was much higher than that for human-OAT1, the results indicate the possibility that human-OAT4 limits the efflux of cephaloridine, leading to the accumulation of cephaloridine and the induction of nephrotoxicity.


Life Sciences | 2001

Characterization of ochratoxin A transport by human organic anion transporters

Kyu Yong Jung; Michio Takeda; Do Kyung Kim; Akihiro Tojo; Shinichi Narikawa; Byung Sun Yoo; Makoto Hosoyamada; Seok Ho Cha; Takashi Sekine; Hitoshi Endou

The purpose of this study was to investigate the characteristics of ochratoxin A (OTA) transport by multispecific human organic anion transporters (hOAT1 and hOAT3, respectively) using the second segment of proximal tubule (S2) cells from mice stably expressing hOAT1 and hOAT3 (S2 hOAT1 and S2 hOAT3). S2 hOAT1 and S2 hOAT3 exhibited a time- and dose-dependent, and a saturable increase in uptake of [3H]-OTA, with apparent Km values of 0.42 microM (hOAT1) and 0.75 microM (hOAT3). These OTA uptakes were inhibited by several substrates for the OATs. Para-aminohippuric acid (PAH), probenecid, piroxicam, octanoate and citrinin inhibited [3H]-OTA uptake by hOAT1 and hOAT3 in a competitive manner (Ki = 4.29-3080 microM), with the following order of potency: probenecid > octanoate > PAH > piroxicam > citrinin for hOAT1; probenecid > piroxicam > octanoate> citrinin > PAH for hOAT3. These results indicate that hOAT1, as well as hOAT3, mediates a high-affinity transport of OTA on the basolateral side of the proximal tubule, but hOAT1- and hOAT3-mediated OTA transport are differently influenced by the substrates for the OATs. These pharmacological characteristics of hOAT1 and hOAT3 may be significantly related with the events in the development of OTA-induced nephrotoxicity in the human kidney.


European Journal of Pharmacology | 2003

Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics

Suparat Khamdang; Michio Takeda; Ellappan Babu; Rie Noshiro; Maristela Lika Onozato; Akihiro Tojo; Atsushi Enomoto; Xiu-Lin Huang; Shinichi Narikawa; Naohiko Anzai; Pawinee Piyachaturawat; Hitoshi Endou

Cephalosporin antibiotics are thought to be excreted into the urine via organic anion transporters (OATs) and OAT can mediate nephrotoxicity by cephalosporins, particularly by cephaloridine. The purpose of this study was to elucidate the interaction of human-OAT2 and rat-OAT2 with cephalosporin antibiotics using proximal tubule cells stably expressing human-OAT2 and rat-OAT2. Human-OAT2 is localized to the basolateral side of the proximal tubule, whereas rat-OAT2 is localized to the apical side of the proximal tubule. Cephalosporins tested were cephalothin, cefoperazone, cefazolin, ceftriaxone, cephaloridine, cefotaxime, cefadroxil and cefamandole. These cephalosporins dose-dependently inhibited organic anion uptake mediated by human-OAT2 and rat-OAT2. There was no species difference observed for the effects of OAT2 with cephalosporins between human and rat transporters. Kinetic analysis revealed that the inhibitory effects for human-OAT2 were competitive. Cephaloridine significantly decreased the viability of cells stably expressing human-OAT2, human-OAT1, human-OAT3 and human-OAT4. The decreased viability of cells stably expressing human-OAT1, human-OAT3 and human-OAT4 but not human-OAT2 was reversed by probenecid. In conclusion, human-OAT2 interacts with cephalosporins, and thus, human-OAT2 may mediate the uptake of cephalosporins on the basolateral side of the proximal tubule. The interaction of human-OAT2 with cephalosporins was the weakest among the basolateral human-OATs tested. In addition, it is suggested that human-OATs mediate cephaloridine-induced nephrotoxicity.


Life Sciences | 2000

Regulation by protein kinase C of organic anion transport driven by rat organic anion transporter 3 (rOAT3).

Michio Takeda; Takashi Sekine; Hitoshi Endou

The organic anion transporter 3 (rOAT3) is a multispecific OAT localized at the basolateral membrane of the proximal tubule. The purpose of this study was to elucidate the role of protein kinase C (PKC) in the regulation of organic anion transport driven by rOAT3 and its mechanism of action. For this purpose, we established and utilized cells derived from the second segment of proximal tubule from mice stably expressing rOAT3 (S2 rOAT3). Phorbol 12-myristate 13-acetate (PMA), a PKC stimulator, attenuated the cellular uptake of estrone sulfate (ES), a prototype organic anion for rOAT3, in a dose- and time-dependent manner. PMA treatment resulted in a decrease in the Vmax, but not the Km of uptake of ES in S2 rOAT3. Treatment of S2 rOAT3 with other PKC stimulators or diacylglycerols also inhibited the uptake of ES, whereas that with an inactive phorbol ester did not. Chelerythrine chloride, a PKC inhibitor, reversed the PMA-induced decrease in uptake of ES in S2 rOAT3. These results suggest that PKC activation downregulates rOAT3-mediated organic anion transport. This down-regulation may be due to the inhibition of translocation or internalization of the rOAT3 protein, resulting in the decrease in the Vmax of rOAT3-mediated organic anion transport.


European Journal of Pharmacology | 2003

Interactions of human organic anion as well as cation transporters with indoxyl sulfate

Atsushi Enomoto; Michio Takeda; Kentarou Taki; Fumio Takayama; Rie Noshiro; Toshimitsu Niwa; Hitoshi Endou

Various uremic toxicants including indoxyl sulfate exert a number of biological effects on uremic patients. In order to elucidate the molecular mechanisms for the pharmacokinetics of indoxyl sulfate in human, we examined the interactions of human organic anion transporters (human-OATs) and human organic cation transporters (human-OCTs) with indoxyl sulfate using stable transfectants. Indoxyl sulfate inhibited human-OAT1, human-OAT3 and human-OAT4, but not human-OAT2, human-OCT1 and human-OCT2. Kinetic analysis revealed that the K(i) values for human-OAT1, human-OAT3 and human-OAT4 were 22.7, 168.7 and 181.3 microM, respectively. Human-OAT1 and human-OAT3 mediated the uptake of indoxyl sulfate and human-OAT4 mediated not only the uptake but also the efflux of indoxyl sulfate. In conclusion, by comparing the K(i) values with the plasma concentration of unbound indoxyl sulfate, it was predicted that human-OAT1 and human-OAT3 mediate the transport of indoxyl sulfate in vivo. In addition, it was suggested that human-OAT1 and human-OAT3 are involved in the urinary excretion of indoxyl sulfate, the exacerbation of renal dysfunction and the induction of uremic encephalopathy by indoxyl sulfate.


Nephron | 1999

Hydrogen Peroxide Induces Necrosis, Apoptosis, Oncosis and Apoptotic Oncosis of Mouse Terminal Proximal Straight Tubule Cells

Michio Takeda; Isao Shirato; Mami Kobayashi; Hitoshi Endou

Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) has been shown to be an important mediator of ischemic and toxic tubular damage. The purpose of this study was to identify the mode of cell death observed in H<sub>2</sub>O<sub>2</sub>-exposed cultures of mouse terminal proximal straight tubule (S<sub>3</sub>) cells. H<sub>2</sub>O<sub>2</sub> induced a dose- and time-dependent decrease in viability of S<sub>3</sub> cells. Morphologically, S<sub>3</sub> cells exposed to H<sub>2</sub>O<sub>2</sub> (0.05–0.1 mM) showed features of necrosis, apoptosis, oncosis and apoptotic oncosis, whereas necrosis occurred most frequently in every experimental condition tested. On the other hand, agarose gel electrophoresis of DNA extracted from S<sub>3</sub> cells exposed to H<sub>2</sub>O<sub>2</sub> revealed a typical DNA ladder pattern. These data suggest that H<sub>2</sub>O<sub>2</sub>-induced proximal tubule damages are associated with the induction of various modes of cell death including necrosis, apoptosis, oncosis and apoptotic oncosis, and with the activation of endonuclease.

Collaboration


Dive into the Michio Takeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge