Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Sekine is active.

Publication


Featured researches published by Takashi Sekine.


Nature | 2002

Molecular identification of a renal urate–anion exchanger that regulates blood urate levels

Atsushi Enomoto; Hiroaki Kimura; Arthit Chairoungdua; Yasuhiro Shigeta; Promsuk Jutabha; Seok Ho Cha; Makoto Hosoyamada; Michio Takeda; Takashi Sekine; Takashi Igarashi; Hirotaka Matsuo; Yuichi Kikuchi; Takashi Oda; Kimiyoshi Ichida; Tatsuo Hosoya; Kaoru Shimokata; Toshimitsu Niwa; Yoshikatsu Kanai; Hitoshi Endou

Urate, a naturally occurring product of purine metabolism, is a scavenger of biological oxidants implicated in numerous disease processes, as demonstrated by its capacity of neuroprotection. It is present at higher levels in human blood (200–500 µM) than in other mammals, because humans have an effective renal urate reabsorption system, despite their evolutionary loss of hepatic uricase by mutational silencing. The molecular basis for urate handling in the human kidney remains unclear because of difficulties in understanding diverse urate transport systems and species differences. Here we identify the long-hypothesized urate transporter in the human kidney (URAT1, encoded by SLC22A12), a urate–anion exchanger regulating blood urate levels and targeted by uricosuric and antiuricosuric agents (which affect excretion of uric acid). Moreover, we provide evidence that patients with idiopathic renal hypouricaemia (lack of blood uric acid) have defects in SLC22A12. Identification of URAT1 should provide insights into the nature of urate homeostasis, as well as lead to the development of better agents against hyperuricaemia, a disadvantage concomitant with human evolution.


Journal of Biological Chemistry | 1997

Expression Cloning and Characterization of a Novel Multispecific Organic Anion Transporter

Takashi Sekine; Nobuaki Watanabe; Makoto Hosoyamada; Yoshikatsu Kanai; Hitoshi Endou

Numerous drugs and endogenous compounds are efficiently excreted from the renal proximal tubule via carrier-mediated pathways. Transepithelial excretion of organic anions occurs via their accumulative transport from the blood into the proximal tubule cells across the basolateral membrane and subsequent secretion into the urine through the apical membrane. Here we report on the isolation of a novel complementary DNA from rat kidney that encodes a 551-amino acid residue protein (OAT1) with 12 putative membrane-spanning domains. When expressed in Xenopus laevisoocytes, OAT1 mediated sodium-independent para-aminohippurate (PAH) uptake (K m = 14.3 ± 2.9 μm). The uptake rate of PAH was increased by the outwardly directed dicarboxylate gradient, consisting with the idea that OAT1 is an organic anion/dicarboxylate exchanger. OAT1 displayed remarkably wide substrate selectivity, covering endogenous substrates such as cyclic nucleotides, a prostaglandin and uric acid, and a variety of drugs with different structures (e.g. antibiotics, a nonsteroidal anti-inflammatory drug, diuretics, an antineoplastic drug, and a uricosuric drug). The Northern blot analysis and in situhybridization revealed that OAT1 is exclusively expressed in the particular segment of the proximal tubule in the kidney. These data suggest that OAT1 is a multispecific organic anion transporter at the basolateral membrane of the proximal tubule. Isolation of OAT1 will facilitate elucidation of the molecular basis of drug kinetics and the development of new drugs lacking unwanted side effects.


Journal of Biological Chemistry | 2000

Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta

Seok Ho Cha; Takashi Sekine; Hiroyuki Kusuhara; Erkang Yu; Ju-Young Kim; Do Kyung Kim; Yuichi Sugiyama; Yoshikatsu Kanai; Hitoshi Endou

A cDNA encoding a novel multispecific organic anion transporter, OAT4, was isolated from a human kidney cDNA library. The OAT4 cDNA consisted of 2210 base pairs that encoded a 550-amino acid residue protein with 12 putative membrane-spanning domains. The amino acid sequence of OAT4 showed 38 to 44% identity to those of other members of the OAT family. Northern blot analysis revealed that OAT4 mRNA is abundantly expressed in the placenta as well as in the kidney. When expressed in Xenopus oocytes, OAT4 mediated the high affinity transport of estrone sulfate (K m = 1.01 μm) and dehydroepiandrosterone sulfate (K m = 0.63 μm) in a sodium-independent manner. OAT4 also mediated the transport of ochratoxin A. OAT4-mediated transport of estrone sulfate was inhibited by several sulfate conjugates, such asp-nitrophenyl sulfate, α-naphthyl sulfate, β-estradiol sulfate, and 4-methylumbelliferyl sulfate. By contrast, glucuronide conjugates showed little or no inhibitory effect on the OAT4-mediated transport of estrone sulfate. OAT4 interacted with chemically heterogeneous anionic compounds, such as nonsteroidal anti-inflammatory drugs, diuretics, sulfobromophthalein, penicillin G, and bile salts, whereas tetraethylammonium, an organic cation, did not. OAT4 is the first member of the multispecific organic anion transporter family, which is expressed abundantly in the placenta. OAT4 might be responsible for the elimination and detoxification of harmful anionic substances from the fetus.


FEBS Letters | 1998

Identification of multispecific organic anion transporter 2 expressed predominantly in the liver

Takashi Sekine; Seok Ho Cha; Minoru Tsuda; Nopporn Apiwattanakul; Noriko Nakajima; Yoshikatsu Kanai; Hitoshi Endou

In the present study, we demonstrate that NLT (novel liver‐specific transport protein) is a multispecific organic anion transporter of the liver. The amino acid sequence of NLT shows 42% identity to that of the renal multispecific organic anion transporter, OAT1. When expressed in Xenopus laevis oocytes, NLT mediated uptake of organic anions, such as salicylate, acetylsalicylate, PGE2, dicarboxylates and p‐aminohippurate. [14C]Salicylate uptake via NLT was saturable (K m=88.8±23.4 μM) and sodium‐independent. Expression of the mRNA of NLT was detected in the liver and kidney (liver≫kidney). We propose that NLT be renamed OAT2.


American Journal of Physiology-renal Physiology | 1999

Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney

Makoto Hosoyamada; Takashi Sekine; Yoshikatsu Kanai; Hitoshi Endou

Recently, we isolated the multispecific organic anion transporter (OAT1) from the rat kidney, which plays important roles in the renal elimination of endogenous and exogenous organic anions including clinically important drugs. In the present study, we cloned and characterized human OAT1. Two cDNA clones, hOAT1-1 cDNA and hOAT1-2 cDNA, were isolated from a human kidney cDNA library, whose amino acid sequences were 86.0% and 87.8% identical to that of rat OAT1, respectively. When expressed in Xenopus laevis oocytes, hOAT1 mediated sodium-independent uptake of p-aminohippurate (PAH) ( K m = 9.3 ± 1.0 μM). hOAT1-mediated PAH uptake was inhibited by bulky inorganic anions, various xenobiotics, and endogenous substances, including benzylpenicillin, furosemide, indomethacin, probenecid, phenol red, urate, and α-ketoglutarate. Northern blot analysis revealed that hOAT1 mRNA is strongly expressed in human kidney; transcripts of different sizes are expressed in skeletal muscle, brain, and placenta. Immunohistochemical analysis using rabbit IgG antibody against the carboxy-terminal 14 peptides of hOAT1 revealed that hOAT1 is expressed at the basolateral membrane of the proximal tubule. hOAT1 gene was located on human chromosome 11q13.1 by fluorescent in situ hybridization analysis. These results indicate that hOAT1 is a multispecific organic anion transporter on the basolateral membrane of the proximal tubule in human kidney.Recently, we isolated the multispecific organic anion transporter (OAT1) from the rat kidney, which plays important roles in the renal elimination of endogenous and exogenous organic anions including clinically important drugs. In the present study, we cloned and characterized human OAT1. Two cDNA clones, hOAT1-1 cDNA and hOAT1-2 cDNA, were isolated from a human kidney cDNA library, whose amino acid sequences were 86.0% and 87.8% identical to that of rat OAT1, respectively. When expressed in Xenopus laevis oocytes, hOAT1 mediated sodium-independent uptake of p-aminohippurate (PAH) (Km = 9. 3 +/- 1.0 microM). hOAT1-mediated PAH uptake was inhibited by bulky inorganic anions, various xenobiotics, and endogenous substances, including benzylpenicillin, furosemide, indomethacin, probenecid, phenol red, urate, and alpha-ketoglutarate. Northern blot analysis revealed that hOAT1 mRNA is strongly expressed in human kidney; transcripts of different sizes are expressed in skeletal muscle, brain, and placenta. Immunohistochemical analysis using rabbit IgG antibody against the carboxy-terminal 14 peptides of hOAT1 revealed that hOAT1 is expressed at the basolateral membrane of the proximal tubule. hOAT1 gene was located on human chromosome 11q13.1 by fluorescent in situ hybridization analysis. These results indicate that hOAT1 is a multispecific organic anion transporter on the basolateral membrane of the proximal tubule in human kidney.


Pflügers Archiv: European Journal of Physiology | 2000

The multispecific organic anion transporter (OAT) family.

Takashi Sekine; Seok Ho Cha; Hitoshi Endou

Abstract. Organic anion transporters play important roles in the elimination of a variety of endogenous substances, xenobiotics and their metabolites from the body. During the last decade, molecular cloning has identified several families of multispecific organic anion transporters mediating the renal and hepatic elimination of organic anions and, most recently, the OAT (organic anion transporter) family, the founding member of which (OAT1) is the basolateral p-aminohippurate (PAH) transporter in the renal proximal tubule. So far, four isoforms have been identified. OATs are membrane proteins with 12 putative membrane-spanning domains and function as sodium-independent exchangers or facilitators. OATs show weak structural similarity to organic cation transporters (OCTs) and OCTN/carnitine transporters. OATs are multispecific organic anion transporters, the substrates of which include both endogenous (e.g. cyclic nucleotides, prostaglandins, urate, dicarboxylates) and exogenous anions (various anionic drugs and environmental substances). All members of the OAT family are expressed in the kidney, while some are also expressed in the liver, brain and placenta. The OAT family represents the renal secretory pathway for organic anions and is also involved in the distribution of organic anions in the body.


Nature Genetics | 1999

Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities.

Takashi Igarashi; Jun Inatomi; Takashi Sekine; Seok Ho Cha; Yoshikatsu Kanai; Motoei Kunimi; Kazuhisa Tsukamoto; Hiroaki Satoh; Mitsunobu Shimadzu; Fumiko Tozawa; Tetsuo Mori; Masaaki Shiobara; George Seki; Hitoshi Endou

Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities


Journal of The American Society of Nephrology | 2002

Role of Organic Anion Transporters in the Tubular Transport of Indoxyl Sulfate and the Induction of its Nephrotoxicity

Atsushi Enomoto; Michio Takeda; Akihiro Tojo; Takashi Sekine; Seok Ho Cha; Suparat Khamdang; Fumio Takayama; Isao Aoyama; Sakurako Nakamura; Hitoshi Endou; Toshimitsu Niwa

In uremic patients, various uremic toxins are accumulated and exert various biologic effects on uremia. Indoxyl sulfate (IS) is one of uremic toxins that is derived from dietary protein, and serum levels of IS are markedly increased in both uremic rats and patients. It has been previously reported that the accumulation of IS promotes the progression of chronic renal failure (CRF). This study demonstrates the role of rat organic anion transporters (rOATs) in the transport of IS and the induction of its nephrotoxicity. The administration of IS to 5/6-nephrectomized rats caused a faster progression of CRF, and immunohistochemistry revealed that IS was detected in the proximal and distal tubules where rOAT1 (proximal tubules) and/or rOAT3 (proximal and distal tubules) were also shown to be localized. In in vitro study, the proximal tubular cells derived from mouse that stably express rOAT1 (S2 rOAT1) and rOAT3 (S2 rOAT3) were established. IS inhibited organic anion uptake by S2 rOAT1 and S2 rOAT3, and the Ki values were 34.2 and 74.4 microM, respectively. Compared with mock, S2 rOAT1 and S2 rOAT3 exhibited higher levels of IS uptake, which was inhibited by probenecid and cilastatin, organic anion transport inhibitors. The addition of IS induced a decrease in the viability of S2 rOAT1 and S2 rOAT3 as compared with the mock, which was rescued by probenecid. These results suggest that rOAT1 and rOAT3 play an important role in the transcellular transport of IS and the induction of its nephrotoxicity.


Biochimica et Biophysica Acta | 2002

Role of human organic anion transporter 4 in the transport of ochratoxin A.

Ellappan Babu; Michio Takeda; Shinichi Narikawa; Yukari Kobayashi; Atsushi Enomoto; Akihiro Tojo; Seok Ho Cha; Takashi Sekine; Dhanapal Sakthisekaran; Hitoshi Endou

The purpose of this study was to investigate the characteristics of ochratoxin A (OTA) transport by multispecific human organic anion transporter 4 (hOAT4) using mouse proximal tubule cells stably transfected with hOAT4 (S(2) hOAT4). Immunohistochemical analysis revealed that hOAT4 protein was localized to the apical side of the proximal tubule. S(2) hOAT4 expressed hOAT4 protein in the apical side as well as basolateral side and the cells were cultured on the plastic dish for experiments. S(2) hOAT4 exhibited a time- and concentration-dependent, and a saturable increase in OTA uptake, with an apparent K(m) value of 22.9+/-2.44 microM. The OTA uptakes were inhibited by several substrates for the OATs. Probenecid, piroxicam, octanoate and citrinin inhibited OTA uptake by hOAT4 in a competitive manner (K(i)=44.4-336.4 microM), with the following order of potency: probenecid > piroxicam > octanoate >citrinin. The efflux of OTA by S(2) hOAT4 was higher than that by mock. Addition of OTA resulted in slight decrease in viability of S(2) hOAT4 compared with mock. These results indicate that hOAT4 mediates the high-affinity transport of OTA on the apical side of the proximal tubule, whereas the transport characteristics of OTA are distinct from those by basolateral OATs.


European Journal of Pharmacology | 2001

Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters

Michio Takeda; Shinichi Narikawa; Makoto Hosoyamada; Seok Ho Cha; Takashi Sekine; Hitoshi Endou

The organic anion transport system is involved in the tubular excretion of various clinically important drugs. The purpose of this study was to characterize the effects of various organic anion transport inhibitors on organic anion transport using proximal tubule cells stably expressing human organic anion transporter 1 (human-OAT1) and human-OAT3, which are localized to the basolateral membrane of the proximal tubule. Organic anion transport inhibitors including betamipron, cilastatin, KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine) and probenecid significantly inhibited human-OAT1- and human-OAT3-mediated organic anion uptake in a dose-dependent manner. Kinetic analyses revealed that these inhibitions were competitive. The Ki values of betamipron, cilastatin, KW-3902 and probencid for human-OAT1 were 23.6, 1470, 7.82 and 12.1 microM, whereas those for human-OAT3 were 48.3, 231, 3.70 and 9.0 microM. These results suggest that betamipron and probenecid could inhibit both human-OAT1- and human-OAT3-mediated organic anion transport in vivo, whereas cilastatin could inhibit only human-OAT3-mediated one. In contrast, KW-3902 did not exert the effects of significance, whereas KW-3902 was the most potent.

Collaboration


Dive into the Takashi Sekine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge