Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mickael D. Tessier is active.

Publication


Featured researches published by Mickael D. Tessier.


Nano Letters | 2014

Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets.

Mickael D. Tessier; Piernicola Spinicelli; Dorian Dupont; G. Patriarche; Sandrine Ithurria; Benoit Dubertret

We present the synthesis and the optical properties of a new type of two-dimensional heterostructure: core/crown CdSe/CdS nanoplatelets. They consist of CdSe nanoplatelets that are extended laterally with CdS. Both the CdSe core and the CdS crown dimensions can be controlled. Their thickness is controlled at the monolayer level. These novel nanoplatelet-based heterostructures have spectroscopic properties that can be similar to nanoplatelets or closer to quantum dots, depending on the CdSe core lateral size.


Nano Letters | 2013

Spectroscopy of Colloidal Semiconductor Core/Shell Nanoplatelets with High Quantum Yield

Mickael D. Tessier; Benoit Mahler; Brice Nadal; Hadrien Heuclin; Silvia Pedetti; Benoit Dubertret

Free standing two-dimensional materials appear as a novel class of structures. Recently, the first colloidal two-dimensional heterostructures have been synthesized. These core/shell nanoplatelets are the first step toward colloidal quantum wells. Here, we study in detail the spectroscopic properties of this novel generation of colloidal nanoparticles. We show that core/shell CdSe/CdZnS nanoplatelets with 80% quantum yield can be obtained. The emission time trace of single core/shell nanoplatelets exhibits reduced blinking compared to core nanoplatelets with a two level emission time trace. At cryogenic temperatures, these nanoplatelets have a quantum yield close to 100% and a stable emission time trace. A solution of core/shell nanoplatelets has emission spectra with a full width half-maximum close to 20 nm, a value much lower than corresponding spherical or rod-shaped heterostructures. Using single particle spectroscopy, we show that the broadening of the emission spectra upon the shell deposition is not due to dispersity between particles but is related to an intrinsic increased exciton-phonon coupling in the shell. We also demonstrate that optical spectroscopy is a relevant tool to investigate the presence of traps induced by shell deposition. The spectroscopic properties of the core/shell nanoplatelets presented here strongly suggest that this new generation of objects will be an interesting alternative to spherical or rod-shaped nanocrystals.


Nano Letters | 2014

Self-Assembly of CdSe Nanoplatelets into Giant Micrometer-Scale Needles Emitting Polarized Light

Benjamin Abécassis; Mickael D. Tessier; Patrick Davidson; Benoit Dubertret

We report on the self-assembly of colloidal CdSe nanoplatelets into micrometers long anisotropic needle-like superparticles (SPs), which are formed in solution upon addition of an antisolvent to a stable colloidal dispersion. Optical fluorescence microscopy, transmission electron microscopy, and small-angle X-ray scattering provide detailed structural characterization and show that each particle is composed of 10(6) nanoplatelets organized in highly aligned columns. Within the SPs, the nanoplatelets are stacked on each other to maximize the contact surface between the ligands. When deposited on a substrate, the planes of the platelets are oriented perpendicularly to its surface and the SPs exhibit polarized emission properties.


Nano Letters | 2014

Recombination dynamics of band edge excitons in quasi-two-dimensional CdSe nanoplatelets.

Louis Biadala; Feng Liu; Mickael D. Tessier; D. R. Yakovlev; Benoit Dubertret; M. Bayer

We report a time-resolved study of the photoluminescence of CdSe colloidal nanoplatelets with two different thicknesses. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. The splitting between bright and dark excitons is enhanced compared to epitaxial quantum well structures as result of dielectric confinement. Despite of strong variations in the absolute magnitude, by comparison with literature data we find a relatively slightly varying bright-dark exciton lifetime ratio in very different CdSe-based colloidal nanostructures, regardless of growth technique and of core and shell properties such as materials, dimensions, etc. This finding points to a universal mechanism in the dark exciton recombination.


ACS Nano | 2013

Phonon Line Emission Revealed by Self-Assembly of Colloidal Nanoplatelets

Mickael D. Tessier; Louis Biadala; Cécile Bouet; Sandrine Ithurria; Benjamin Abécassis; Benoit Dubertret

We show that colloidal nanoplatelets can self-assemble to form a 1D superlattice. When self-assembled, an additional emission line appears in the photoluminescence spectrum at low temperatures. This emission line is a collective effect, greatly enhanced when the NPLs are self-assembled. It is attributed to the longitudinal optical (LO) phonon replica of the band-edge exciton, and its presence in self-assembled nanoplatelets is explained using a model based on an efficient photons reabsorption between neighboring nanoplatelets. The presence of phonon replica at low temperatures in ensemble measurements suggests the possibility to design a laser, based on self-assembled nanoplatelets.


Journal of the American Chemical Society | 2016

Aminophosphines: A Double Role in the Synthesis of Colloidal Indium Phosphide Quantum Dots.

Mickael D. Tessier; Kim De Nolf; Dorian Dupont; Davy Sinnaeve; Jonathan De Roo; Zeger Hens

Aminophosphines have recently emerged as economical, easy-to-implement precursors for making InP nanocrystals, which stand out as alternative Cd-free quantum dots for optoelectronic applications. Here, we present a complete investigation of the chemical reactions leading to InP formation starting from InCl3 and tris(dialkylamino)phosphines. Using nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction, we demonstrate that injection of the aminophosphine in the reaction mixture is followed by a transamination with oleylamine, the solvent of the reaction. In addition, mass spectrometry and NMR indicate that the formation of InP concurs with that of tetra(oleylamino)phosphonium chloride. The chemical yield of the InP formation agrees with this 4 P(+III) → P(-III) + 3 P(+V) disproportionation reaction occurring, since full conversion of the In precursor was only attained for a 4:1 P/In ratio. Hence it underlines the double role of the aminophosphine as both precursor and reducing agent. These new insights will guide further optimization of high quality InP quantum dots and might lead to the extension of synthetic protocols toward other pnictide nanocrystals.


Langmuir | 2015

Stacking and Colloidal Stability of CdSe Nanoplatelets

Santanu Jana; Trang N. T. Phan; Cécile Bouet; Mickael D. Tessier; Patrick Davidson; Benoit Dubertret; Benjamin Abécassis

Colloidal CdSe nanoplatelets with monolayer control over their thickness can now be synthesized in solution and display interesting optical properties. From a fundamental point of view, the self-assembly of CdSe nanoplatelets can impact their optical properties through short-range interactions, and achieving control over their dispersion state in solution is of major relevance. The related issue of colloidal stability is important from an applicative standpoint in the perspective of the processing of these materials. Using UV-vis spectroscopy, we assess the colloidal stability of dispersions of CdSe nanoplatelets at different nanoparticle and ligand (oleic acid) concentrations. We unravel an optimum in oleic acid concentration for colloidal stability and show that even moderately concentrated dispersions flocculate on a time scale ranging from minutes to hours. Small-angle X-ray scattering shows that the precipitation proceeds through a face-to-face stacking of the nanoplatelets due to long-ranged van der Waals attraction. To address this issue, we coated the platelets with a carboxylic acid-terminated polystyrene, thus achieving colloidal stability while retaining the optical properties of the platelets.


ACS Nano | 2016

Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals

Louis Biadala; Benjamin Siebers; Yasin Beyazit; Mickael D. Tessier; Dorian Dupont; Zeger Hens; D. R. Yakovlev; M. Bayer

We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.


Journal of Agricultural and Food Chemistry | 2017

Development of a Rainbow Lateral Flow Immunoassay for the Simultaneous Detection of Four Mycotoxins

Astrid Foubert; Natalia V. Beloglazova; Anna Viktorovna Gordienko; Mickael D. Tessier; Emile Drijvers; Zeger Hens; Sarah De Saeger

A multiplex lateral flow immunoassay (LFIA) for the determination of the mycotoxins deoxynivalenol, zearalenone, and T2/HT2-toxin in barley was developed with luminescent quantum dots (QDs) as label. The synthesized QDs were hydrophilized by two strategies, that is, coating with an amphiphilic polymer or silica. The water-soluble QDs were compared with regard to their bioconjugation with monoclonal antibody (mAb) and were tested on a LFIA. Silica-coated QDs that contained epoxy groups were most promising. Therefore, green, orange, and red epoxy-functionalized silica-coated QDs were conjugated with anti-ZEN, anti-DON, and anti-T2 mAb, respectively. The LFIA was developed in accordance with the European Commission legal limits with cutoff limits of 1000, 80, and 80 μg/kg for deoxynivalenol, zearalenone, and T2/HT2-toxin, respectively. The LFIA gave a fast result (15 min) with a low false-negative rate (<5%), and the results were easy to interpret without any sophisticated equipment.


Talanta | 2016

Sensitive QD@SiO2-based immunoassay for triplex determination of cereal-borne mycotoxins

Natalia V. Beloglazova; Astrid Foubert; Anna Viktorovna Gordienko; Mickael D. Tessier; Tangi Aubert; Emile Drijvers; Irina Yu. Goryacheva; Zeger Hens; Sarah De Saeger

A sensitive tool for simultaneous quantitative determination of three analytes in one single well of a microtiter plate is shown for the first time. The developed technique is based on use of colloidal quantum dot enrobed into a silica shell (QD@SiO2) derivatives as a highly responsive label. Silica-coated quantum dots were prepared and subsequently modified via the co-hydrolysis with tetraethylorthosilicate (TEOS) and various organosilane reagents. Different surface modification schemes were compared in terms of applicability of the obtained particles for the multiplex immunoassay, e.g. stability and simplicity of their conjugation with biomolecules. As model system a multiplex immunosorbent assay for screening of three mycotoxins (deoxynivalenol, zearalenone and aflatoxin B1) in cereal-based products was realized via a co-immobilization of three different specific antibodies (anti- deoxynivalenol, anti-zearalenone and anti-aflatoxin B1) in one single well of a microtiter plate. Mycotoxins were simultaneously determined by labelling their conjugates with QD@SiO2 emitting in different parts of the visible spectrum. The limits of detection for the simultaneous determination were 6.1 and 5.3, 5.4 and 4.1, and 2.6 and 1.9µgkg(-1) for deoxynivalenol, zearalenone and aflatoxin B1 in maize and wheat, respectively. As confirmatory method, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used.

Collaboration


Dive into the Mickael D. Tessier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge