Mickaël Michaud
Institut Gustave Roussy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mickaël Michaud.
Science | 2011
Mickaël Michaud; Isabelle Martins; Abdul Qader Sukkurwala; Sandy Adjemian; Yuting Ma; Patrizia Pellegatti; Shensi Shen; Oliver Kepp; Marie Scoazec; Grégoire Mignot; Santiago Rello-Varona; Laurie Menger; Erika Vacchelli; Lorenzo Galluzzi; François Ghiringhelli; Francesco Di Virgilio; Laurence Zitvogel; Guido Kroemer
The release of adenosine triphosphate through autophagy can promote antitumor immune responses. Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recruitment of immune cells, and restored chemotherapeutic responses but only in immunocompetent hosts. Thus, autophagy is essential for the immunogenic release of ATP from dying cells, and increased extracellular ATP concentrations improve the efficacy of antineoplastic chemotherapies when autophagy is disabled.
Cell Death and Disease | 2010
Eugenia Morselli; Maria Chiara Maiuri; Maria Markaki; Evgenia Megalou; Angela Pasparaki; Konstantinos Palikaras; Alfredo Criollo; Luca Galluzzi; Shoaib Ahmad Malik; Ilio Vitale; Mickaël Michaud; Frank Madeo; Nektarios Tavernarakis; Guido Kroemer
Caloric restriction and autophagy-inducing pharmacological agents can prolong lifespan in model organisms including mice, flies, and nematodes. In this study, we show that transgenic expression of Sirtuin-1 induces autophagy in human cells in vitro and in Caenorhabditis elegans in vivo. The knockdown or knockout of Sirtuin-1 prevented the induction of autophagy by resveratrol and by nutrient deprivation in human cells as well as by dietary restriction in C. elegans. Conversely, Sirtuin-1 was not required for the induction of autophagy by rapamycin or p53 inhibition, neither in human cells nor in C. elegans. The knockdown or pharmacological inhibition of Sirtuin-1 enhanced the vulnerability of human cells to metabolic stress, unless they were stimulated to undergo autophagy by treatment with rapamycin or p53 inhibition. Along similar lines, resveratrol and dietary restriction only prolonged the lifespan of autophagy-proficient nematodes, whereas these beneficial effects on longevity were abolished by the knockdown of the essential autophagic modulator Beclin-1. We conclude that autophagy is universally required for the lifespan-prolonging effects of caloric restriction and pharmacological Sirtuin-1 activators.
Science | 2012
Laura Senovilla; Ilio Vitale; Isabelle Martins; Claire Pailleret; Mickaël Michaud; Lorenzo Galluzzi; Sandy Adjemian; Oliver Kepp; Mireia Niso-Santano; Shensi Shen; Guillermo Mariño; Alfredo Criollo; Alice Boilève; B. Job; Sylvain Ladoire; François Ghiringhelli; Antonella Sistigu; Takahiro Yamazaki; Santiago Rello-Varona; Clara Locher; Vichnou Poirier-Colame; Monique Talbot; Alexander Valent; Francesco Berardinelli; Antonio Antoccia; Fabiola Ciccosanti; Gian Maria Fimia; Mauro Piacentini; Antonio Fueyo; Nicole L. Messina
Keeping Cancer Cells At Bay Cancer cells are often aneuploid; that is, they have an abnormal number of chromosomes. But to what extent this contributes to the tumorigenic phenotype is not clear. Senovilla et al. (p. 1678; see the Perspective by Zanetti and Mahadevan) found that tetraploidization of cancer cells can cause them to become immunogenic and thus aid in their clearance from the body by the immune system. Cells with excess chromosomes put stress on the endoplasmic reticulum, which leads to movement of the protein calreticulin to the cell surface. Calreticulin exposure in turn caused recognition of cancer cells in mice by the host immune system. Thus, the immune system appears to serve a protective role in eliminating hyperploid cells that must be overcome to allow unrestricted growth of cancer cells. Polyploid cancer cells trigger an immune response owing to proteins aberrantly exposed on their outer surfaces. Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.
Oncogene | 2011
Isabelle Martins; Oliver Kepp; Frederic Schlemmer; Sandy Adjemian; Shensi Shen; Mickaël Michaud; Laurie Menger; Abdelaziz Gdoura; Nicolas Tajeddine; Antoine Tesniere; Laurence Zitvogel; Guido Kroemer
In contrast to other cytotoxic agents including anthracyclins and oxaliplatin (OXP), cisplatin (CDDP) fails to induce immunogenic tumor cell death that would allow to stimulate an anticancer immune response and hence to amplify its therapeutic efficacy. This failure to induce immunogenic cell death can be attributed to CDDPs incapacity to elicit the translocation of calreticulin (CRT) from the lumen of the endoplasmic reticulum (ER) to the cell surface. Here, we show that, in contrast to OXP, CDDP is unable to activate the protein kinase-like ER kinase (PERK)-dependent phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). Accordingly, CDDP also failed to stimulate the formation of stress granules and macroautophagy, two processes that only occur after eIF2α phosphorylation. Using a screening method that monitors the voyage of CRT from the ER lumen to the cell surface, we identified thapsigargin (THAPS), an inhibitor of the sarco/ER Ca2+-ATPase as a molecule that on its own does not stimulate CRT exposure, yet endows CDDP with the capacity to do so. The combination of ER stress inducers (such as THAPS or tunicamycin) and CDDP effectively induced the translocation of CRT to the plasma membrane, as well as immunogenic cell death, although ER stress or CDDP alone was insufficient to induce CRT exposure and immunogenic cell death. Altogether, our results underscore the contribution of the ER stress response to the immunogenicity of cell death.
Molecular Aspects of Medicine | 2010
Lorenzo Galluzzi; Eugenia Morselli; Oliver Kepp; Ilio Vitale; Alice Rigoni; Erika Vacchelli; Mickaël Michaud; Hans Zischka; Maria Castedo; Guido Kroemer
Mitochondria are required for cellular survival, yet can also orchestrate cell death. The peculiar biochemical properties of these organelles, which are intimately linked to their compartmentalized ultrastructure, provide an optimal microenvironment for multiple biosynthetic and bioenergetic pathways. Most intracellular ATP is generated by mitochondrial respiration, which also represents the most relevant source of intracellular reactive oxygen species. Mitochondria participate in a plethora of anabolic pathways, including cholesterol, cardiolipin, heme and nucleotide biosynthesis. Moreover, mitochondria integrate numerous pro-survival and pro-death signals, thereby exerting a decisive control over several biochemical cascades leading to cell death, in particular the intrinsic pathway of apoptosis. Therefore, it is not surprising that cancer cells often manifest the deregulation of one or several mitochondrial functions. The six classical hallmarks of cancer (i.e., limitless replication, self-provision of proliferative stimuli, insensitivity to antiproliferative signals, disabled apoptosis, sustained angiogenesis, invasiveness/metastatic potential), as well as other common features of tumors (i.e., avoidance of the immune response, enhanced anabolic metabolism, disabled autophagy) may directly or indirectly implicate deregulated mitochondria. In this review, we discuss several mechanisms by which mitochondria can contribute to malignant transformation and tumor progression.
Cancer and Metastasis Reviews | 2011
Oliver Kepp; Lorenzo Galluzzi; Isabelle Martins; Frederic Schlemmer; Sandy Adjemian; Mickaël Michaud; Abdul Qader Sukkurwala; Laurie Menger; Laurence Zitvogel; Guido Kroemer
The success of some chemo- and radiotherapeutic regimens relies on the induction of immunogenic tumor cell death and on the induction of an anticancer immune response. Cells succumbing to immunogenic cell death undergo specific changes in their surface characteristics and release pro-immunogenic factors according to a defined spatiotemporal pattern. This stimulates antigen presenting cells such as dendritic cells to efficiently take up tumor antigens, process them, and cross-prime cytotoxic T lymphocytes, thus eliciting a tumor-specific cognate immune response. Such a response can also target therapy-resistant tumor (stem) cells, thereby leading, at least in some instances, to tumor eradication. In this review, we shed some light on the molecular identity of the factors that are required for cell death to be perceived as immunogenic. We discuss the intriguing observations that the most abundant endoplasmic reticulum protein, calreticulin, the most abundant intracellular metabolite, ATP, and the most abundant non-histone chromatin-binding protein, HMGB1, can determine whether cell death is immunogenic as they appear on the surface or in the microenvironment of dying cells.
Science Translational Medicine | 2012
Laurie Menger; Erika Vacchelli; Sandy Adjemian; Isabelle Martins; Yuting Ma; Shensi Shen; Takahiro Yamazaki; Abdul Qader Sukkurwala; Mickaël Michaud; Grégoire Mignot; Frederic Schlemmer; Eric Sulpice; Clara Locher; Xavier Gidrol; François Ghiringhelli; Nazanine Modjtahedi; Lorenzo Galluzzi; Fabrice Andre; Laurence Zitvogel; Oliver Kepp; Guido Kroemer
Cardiac glycosides kill cancer cells in a way that stimulates the immune response. A Cancer Double Feature—3807 A traditional chemotherapeutic drug performs a one-act play: It enters and kills a dividing cancer cell and then takes its bow. However, some chemotherapeutics have a wider range—they not only kill individual cancer cells but also do so in such a way that the dead cells function as a vaccine that primes the immune system to attack other cancer cells. Menger et al. now identify cardiac glycosides as potent inducers of this so-called immunogenic cell death. Using fluorescence microscopy to detect the hallmarks of immunogenic cell death, the authors identified cardiac glycosides, such as the heart drug digoxin, as immunogenic cell death inducers. They then verified that these drugs had anticancer effects in mice with intact immune systems but not in mice that lacked functional immunity. Cancer cells that died from digoxin exposure then effectively functioned as a vaccine—stimulating the immune system so that growth of future cancers is prevented. Indeed, human cancer patients on chemotherapy who happened to be taking the cardiac glycoside digoxin to treat other medical conditions had improved overall survival compared with patients who were not taking these drugs. Although efficacy in cancer patients remains to be formally tested, cardiac glycosides may augment chemotherapeutic response—forcing cancer to bow out. Some successful chemotherapeutics, notably anthracyclines and oxaliplatin, induce a type of cell stress and death that is immunogenic, hence converting the patient’s dying cancer cells into a vaccine that stimulates antitumor immune responses. By means of a fluorescence microscopy platform that allows for the automated detection of the biochemical hallmarks of such a peculiar cell death modality, we identified cardiac glycosides (CGs) as exceptionally efficient inducers of immunogenic cell death, an effect that was associated with the inhibition of the plasma membrane Na+- and K+-dependent adenosine triphosphatase (Na+/K+-ATPase). CGs exacerbated the antineoplastic effects of DNA-damaging agents in immunocompetent but not immunodeficient mice. Moreover, cancer cells succumbing to a combination of chemotherapy plus CGs could vaccinate syngeneic mice against a subsequent challenge with living cells of the same type. Finally, retrospective clinical analyses revealed that the administration of the CG digoxin during chemotherapy had a positive impact on overall survival in cohorts of breast, colorectal, head and neck, and hepatocellular carcinoma patients, especially when they were treated with agents other than anthracyclines and oxaliplatin.
Cell Cycle | 2009
Isabelle Martins; Antoine Tesniere; Oliver Kepp; Mickaël Michaud; Frederic Schlemmer; Laura Senovilla; Claire Séror; Didier Métivier; Jean-Luc Perfettini; Laurence Zitvogel; Guido Kroemer
Chemotherapy can induce anticancer immune responses. In contrast to a widely extended prejudice, apoptotic cell death is often more efficient in eliciting a protective anticancer immune response than necrotic cell death. Recently, we have found that purinergic receptors of the P2X7 type are required for the anticancer immune response induced by chemotherapy. ATP is the endogenous ligand that has the highest affinity for P2X7. Therefore, we investigated the capacity of a panel of chemotherapeutic agents to induce ATP release from cancer cells. Here, we describe that multiple distinct anticancer drugs reduce the intracellular concentration of ATP before and during the manifestation of apoptotic characteristics such as the dissipation of the mitochondrial transmembrane potential and the exposure of phosphatidylserine residues on the plasma membrane. Indeed, as apoptosis progresses, intracellular ATP concentrations decrease, although even advanced-stage apoptotic cells still contain sizeable ATP levels. Only when cells enter secondary necrosis, the ATP concentration falls to undetectable levels. Concomitantly, a wide range of chemotherapeutic agents causes the release of ATP into the extracellular space as they induce tumor cell death. Hence, ATP release is a general correlate of apoptotic cell death induced by conventional anticancer therapies.
Apoptosis | 2009
Oliver Kepp; Antoine Tesniere; Frederic Schlemmer; Mickaël Michaud; Laura Senovilla; Laurence Zitvogel; Guido Kroemer
It is still enigmatic under which circumstances cellular demise induces an immune response or rather remains immunologically silent. Moreover, the question remains open under which circumstances apoptotic, autophagic or necrotic cells are immunogenic or tolerogenic. Although apoptosis appears to be morphologically homogenous, recent evidence suggests that the pre-apoptotic surface-exposure of calreticulin may dictate the immune response to tumor cells that succumb to anticancer treatments. Moreover, the release of high-mobility group box 1 (HMGB1) during late apoptosis and secondary necrosis contributes to efficient antigen presentation and cytotoxic T-cell activation because HMGB1 can bind to Toll like receptor 4 on dendritic cells, thereby stimulating optimal antigen processing. Cell death accompanied by autophagy also may facilitate cross priming events. Apoptosis, necrosis and autophagy are closely intertwined processes. Often, cells manifest autophagy before they undergo apoptosis or necrosis, and apoptosis is generally followed by secondary necrosis. Whereas apoptosis and necrosis irreversibly lead to cell death, autophagy can clear cells from stress factors and thus facilitate cellular survival. We surmise that the response to cellular stress like chemotherapy or ionizing irradiation, dictates the immunological response to dying cells and that this immune response in turn determines the clinical outcome of anticancer therapies. The purpose of this review is to summarize recent insights into the immunogenicity of dying tumor cells as a function of the cell death modality.
Oncogene | 2011
Shensi Shen; Oliver Kepp; Mickaël Michaud; Isabelle Martins; H Minoux; Didier Métivier; M C Maiuri; Romano T. Kroemer; Guido Kroemer
To address the question of whether established or experimental anticancer chemotherapeutics can exert their cytotoxic effects by autophagy, we performed a high-content screen on a set of cytotoxic agents. We simultaneously determined parameters of autophagy, apoptosis and necrosis on cells exposed to ∼1400 compounds. Many agents induced a ‘pure’ autophagic, apoptotic or necrotic phenotype, whereas less than 100 simultaneously induced autophagy, apoptosis and necrosis. A systematic analysis of the autophagic flux induced by the most potent 80 inducers of GFP-LC3 puncta among the NCI panel agents showed that 59 among them truly induced autophagy. The remaining 21 compounds were potent inducers of apoptosis or necrosis, yet failed to stimulate an autophagic flux, which were characterized as microtubule inhibitors. Knockdown of ATG7 was efficient in preventing GFP-LC3 puncta, yet failed to attenuate cell death by the agents that induce GFP-LC3 puncta. Thus there is not a single compound that would induce cell death by autophagy in our screening, underscoring the idea that cell death is rarely, if ever, executed by autophagy in human cells.