Micol Tillhon
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Micol Tillhon.
Biochemical Pharmacology | 2012
Micol Tillhon; Luis Miguel Guamán Ortiz; Paolo Lombardi; A.Ivana Scovassi
Chemical compounds derived from plants have been used since the origin of human beings to counteract a number of diseases. Among them, the natural isoquinoline alkaloid berberine has been employed in Ayurvedic and Chinese Medicine for hundreds of years with a wide range of pharmacological and biochemical effects. More recently, a growing body of reports supports the evidence that berberine has anticancer effects, being able to block the proliferation of and to kill cancer cells. This review addresses the properties and therapeutic use of berberine and focuses on the recent advances as promising anticancer drug lead.
Molecules | 2014
Luis Miguel Guamán Ortiz; Paolo Lombardi; Micol Tillhon; Anna Ivana Scovassi
Alkaloids are used in traditional medicine for the treatment of many diseases. These compounds are synthesized in plants as secondary metabolites and have multiple effects on cellular metabolism. Among plant derivatives with biological properties, the isoquinoline quaternary alkaloid berberine possesses a broad range of therapeutic uses against several diseases. In recent years, berberine has been reported to inhibit cell proliferation and to be cytotoxic towards cancer cells. Based on this evidence, many derivatives have been synthesized to improve berberine efficiency and selectivity; the results so far obtained on human cancer cell lines support the idea that they could be promising agents for cancer treatment. The main properties of berberine and derivatives will be illustrated.
Biochemical Pharmacology | 2010
Vincenzo Giansanti; Francesca Donà; Micol Tillhon; A.Ivana Scovassi
Poly(ADP-ribosylation) consists in the conversion of β-NAD(+) into ADP-ribose, which is then bound to acceptor proteins and further used to form polymers of variable length and structure. The correct turnover of poly(ADP-ribose) is ensured by the concerted action of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) enzymes, which are responsible for polymer synthesis and degradation, respectively. Despite the positive role of poly(ADP-ribosylation) in sensing and repairing DNA damage, generated also by ROS, PARP over-activation could allow NAD depletion and consequent necrosis, thus leading to an inflammatory condition in many diseases. In this respect, inhibition of PARP enzymes could exert a protective role towards a number of pathological conditions; i.e. the combined treatment of tumors with PARP inhibitors/anticancer agents proved to have a beneficial effect in cancer therapy. Thus, pharmacological inactivation of poly(ADP-ribosylation) could represent a novel therapeutic strategy to limit cellular injury and to attenuate the inflammatory processes that characterize many disorders.
Archives of Toxicology | 2015
Ilaria Dutto; Micol Tillhon; Ornella Cazzalini; Lucia Anna Stivala; Ennio Prosperi
The cell cycle inhibitor p21CDKN1A is a protein playing multiple roles not only in the DNA damage response, but also in many cellular processes during unperturbed cell growth. The main, well-known function of p21 is to arrest cell cycle progression by inhibiting the activity of cyclin-dependent kinases. In addition, p21 is involved in the regulation of transcription, apoptosis, DNA repair, as well as cell motility. However, p21 appears to a have a dual-face behavior because, in addition to its tumor suppressor functions, it may act as an oncogene, depending on the cell type and on the cellular localization. As a biomarker of the cell response to different toxic stimuli, p21 expression and functions have been analyzed in an impressive number of studies investigating the activity of several types of chemicals, in order to determine their possible harmful effects on human cells. Here, we review these studies in order to highlight the different roles p21 may play in the cell response to chemical exposure and to better evaluate the information provided by this biomarker.
DNA Repair | 2010
Ornella Cazzalini; Francesca Donà; Monica Savio; Micol Tillhon; Cristina Maccario; Paola Perucca; Lucia Anna Stivala; A.Ivana Scovassi; Ennio Prosperi
The cell cycle inhibitor p21(CDKN1A) has been shown to participate in nucleotide excision repair by interacting with PCNA. Here we have investigated whether p21 plays a role in base excision repair (BER), by analyzing p21 interactions with BER factors, and by assessing the response of p21(-/-) human fibroblasts to DNA damage induced by alkylating agents. Absence of p21 protein resulted in a higher sensitivity to alkylation-induced DNA damage, as indicated by reduced clonogenic efficiency, defective DNA repair (assessed by the comet test), and by persistence of histone H2AX phosphorylation. To elucidate the mechanisms at the basis of the function of p21 in BER, we focused on its interaction with poly(ADP-ribose) polymerase-1 (PARP-1), an important player in this repair process. p21 was found to bind the automodification/DNA binding domain of PARP-1, although some interaction occurred also with the catalytic domain after DNA damage. This association was necessary to regulate PARP-1 activity since poly(ADP-ribosylation) induced by DNA damage was higher in p21(-/-) human fibroblasts than in parental p21(+/+) cells, and in primary fibroblasts after p21 knock-down by RNA interference. Concomitantly, recruitment of PARP-1 and PCNA to damaged DNA was greater in p21(-/-) than in p21(+/+) fibroblasts. This accumulation resulted in persistent interaction of PARP-1 with BER factors, such as XRCC1 and DNA polymerase beta, suggesting that prolonged association reduced the DNA repair efficiency. These results indicate that p21 regulates the interaction between PARP-1 and BER factors, to promote efficient DNA repair.
Nucleic Acids Research | 2014
Ornella Cazzalini; Sabrina Sommatis; Micol Tillhon; Ilaria Dutto; Angela Bachi; Alexander Rapp; Tiziana Nardo; A.Ivana Scovassi; Daniela Necchi; M. Cristina Cardoso; Lucia Anna Stivala; Ennio Prosperi
The proliferating cell nuclear antigen (PCNA) protein serves as a molecular platform recruiting and coordinating the activity of factors involved in multiple deoxyribonucleic acid (DNA) transactions. To avoid dangerous genome instability, it is necessary to prevent excessive retention of PCNA on chromatin. Although PCNA functions during DNA replication appear to be regulated by different post-translational modifications, the mechanism regulating PCNA removal and degradation after nucleotide excision repair (NER) is unknown. Here we report that CREB-binding protein (CBP), and less efficiently p300, acetylated PCNA at lysine (Lys) residues Lys13,14,77 and 80, to promote removal of chromatin-bound PCNA and its degradation during NER. Mutation of these residues resulted in impaired DNA replication and repair, enhanced the sensitivity to ultraviolet radiation, and prevented proteolytic degradation of PCNA after DNA damage. Depletion of both CBP and p300, or failure to load PCNA on DNA in NER deficient cells, prevented PCNA acetylation and degradation, while proteasome inhibition resulted in accumulation of acetylated PCNA. These results define a CBP and p300-dependent mechanism for PCNA acetylation after DNA damage, linking DNA repair synthesis with removal of chromatin-bound PCNA and its degradation, to ensure genome stability.
Biochemical Pharmacology | 2011
Vincenzo Giansanti; Micol Tillhon; Giuliano Mazzini; Ennio Prosperi; Paolo Lombardi; A.Ivana Scovassi
Cancer still represents a major health problem worldwide, which urges the development of more effective strategies. Resistance to chemotherapy, a major obstacle for cancer eradication, is mainly related to an intrinsic failure to activate the apoptotic pathways. However, a protective effect of autophagy toward cancer cells has been recently observed, thus adding further complexity to the development of an effective approach counteracting cancer cell growth and improving the response to therapy.
Molecular and Cellular Endocrinology | 2011
Michele Parks; Micol Tillhon; Francesca Donà; Ennio Prosperi; A.Ivana Scovassi
Colon carcinoma represents a major problem in oncology, since this type of cancer responds poorly to conventional chemotherapy. Many groups are actively involved in the search of new experimental strategies to bypass this problem. We investigated the effects of 2-methoxyestradiol (2-ME), which derives from the NADPH-dependent cytochrome P450 metabolism of 17β-estradiol. This compound has raised much interest in the past few decades for its inhibitory effects on the growth of cancer cells of different origin; however, little is known about its use on colon carcinoma-derived cell lines. In the present study, we investigated the effects of 2-ME on cell proliferation and cell cycle of two human colon carcinoma cell lines, namely HCT116 and SW613-B3. Our results showed a net anti-proliferative effect of 2-ME on both cell lines, which is accompanied by cell cycle arrest; moreover, we demonstrated that 2-ME is able to induce apoptosis as well as autophagy. This body of evidence points out that 2-ME could be considered as a promising tool against colon carcinoma.
BioMed Research International | 2014
Luis Miguel Guamán Ortiz; Micol Tillhon; Michael Parks; Ilaria Dutto; Ennio Prosperi; Monica Savio; Andrea G.A. Arcamone; Franco Buzzetti; Paolo Lombardi; Anna Ivana Scovassi
The pharmacological use of the plant alkaloid berberine is based on its antibacterial and anti-inflammatory properties; recently, anticancer activity has been attributed to this compound. To exploit this interesting feature, we synthesized three berberine derivatives, namely, NAX012, NAX014, and NAX018, and we tested their effects on two human colon carcinoma cell lines, that is, HCT116 and SW613-B3, which are characterized by wt and mutated p53, respectively. We observed that cell proliferation is more affected by cell treatment with the derivatives than with the lead compound; moreover, the derivatives proved to induce cell cycle arrest and cell death through apoptosis, thus suggesting that they could be promising anticancer drugs. Finally, we detected typical signs of autophagy in cells treated with berberine derivatives.
Mutation Research | 2015
Daniela Necchi; Antonella Pinto; Micol Tillhon; Ilaria Dutto; Melania Maria Serafini; Cristina Lanni; Stefano Govoni; Marco Racchi; Ennio Prosperi
Down syndrome (DS) is characterized by genetic instability, neurodegeneration, and premature aging. However, the molecular mechanisms leading to this phenotype are not yet well understood. Here, we report that DS fibroblasts from both fetal and adult donors show the presence of oxidative DNA base damage, such as dihydro-8-oxoguanine (8-oxodG), and activation of a DNA damage response (DDR), already during unperturbed growth conditions. DDR with checkpoint activation was indicated by histone H2AX and Chk2 protein phosphorylation, and by increased p53 protein levels. In addition, both fetal and adult DS fibroblasts were more sensitive to oxidative DNA damage induced by potassium bromate, and were defective in the removal of 8-oxodG, as compared with age-matched cells from control healthy donors. The analysis of core proteins participating in base excision repair (BER), such as XRCC1 and DNA polymerase β, showed that higher amounts of these factors were bound to chromatin in DS than in control cells, even in the absence of DNA damage. These findings occurred in concomitance with increased levels of phosphorylated XRCC1 detected in DS cells. These results indicate that DS cells exhibit a BER deficiency, which is associated with prolonged chromatin association of core BER factors.