Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mieke Gouwy is active.

Publication


Featured researches published by Mieke Gouwy.


Journal of Experimental Medicine | 2008

Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation

Paul Proost; Tamara Loos; Anneleen Mortier; Evemie Schutyser; Mieke Gouwy; Samuel Noppen; Chris Dillen; Isabelle Ronsse; René Conings; Sofie Struyf; Ghislain Opdenakker; P C Maudgal; Jozef Van Damme

Biological functions of proteins are influenced by posttranslational modifications such as on/off switching by phosphorylation and modulation by glycosylation. Proteolytic processing regulates cytokine and chemokine activities. In this study, we report that natural posttranslational citrullination or deimination alters the biological activities of the neutrophil chemoattractant and angiogenic cytokine CXCL8/interleukin-8 (IL-8). Citrullination of arginine in position 5 was discovered on 14% of natural leukocyte-derived CXCL8(1–77), generating CXCL8(1–77)Cit5. Peptidylarginine deiminase (PAD) is known to citrullinate structural proteins, and it may initiate autoimmune diseases. PAD efficiently and site-specifically citrullinated CXCL5, CXCL8, CCL17, CCL26, but not IL-1β. In comparison with CXCL8(1–77), CXCL8(1–77)Cit5 had reduced affinity for glycosaminoglycans and induced less CXCR2-dependent calcium signaling and extracellular signal-regulated kinase 1/2 phosphorylation. In contrast to CXCL8(1–77), CXCL8(1–77)Cit5 was resistant to thrombin- or plasmin-dependent potentiation into CXCL8(6–77). Upon intraperitoneal injection, CXCL8(6–77) was a more potent inducer of neutrophil extravasation compared with CXCL8(1–77). Despite its retained chemotactic activity in vitro, CXCL8(1–77)Cit5 was unable to attract neutrophils to the peritoneum. Finally, in the rabbit cornea angiogenesis assay, the equally potent CXCL8(1–77) and CXCL8(1–77)Cit5 were less efficient angiogenic molecules than CXCL8(6–77). This study shows that PAD citrullinates the chemokine CXCL8, and thus may dampen neutrophil extravasation during acute or chronic inflammation.


Molecular Pharmacology | 2008

Synergy between Coproduced CC and CXC Chemokines in Monocyte Chemotaxis through Receptor-Mediated Events

Mieke Gouwy; Sofie Struyf; Samuel Noppen; Evemie Schutyser; Jean-Yves Springael; Marc Parmentier; Paul Proost; Jozef Van Damme

CC and CXC chemokines coinduced in fibroblasts and leukocytes by cytokines and microbial agents determine the number of phagocytes infiltrating into inflamed tissues. Interleukin-8/CXCL8 and stromal cell-derived factor-1/CXCL12 significantly and dose-dependently increased the migration of monocytes, expressing the corresponding CXC chemokine receptors CXCR2 and CXCR4, toward suboptimal concentrations of the monocyte chemotactic proteins CCL2 or CCL7. These findings were confirmed using different chemotaxis assays and monocytic THP-1 cells. In contrast, the combination of two CC chemokines (CCL2 plus CCL7) or two CXC chemokines (CXCL8 plus CXCL12) did not provide synergy in monocyte chemotaxis. These data show that chemokines competing for related receptors and using similar signaling pathways do not synergize. Receptor heterodimerization is probably not essential for chemokine synergy as shown in CXCR4/CCR2 cotransfectants. It is noteworthy that CCL2 mediated extracellular signal-regulated kinase 1/2 phosphorylation and calcium mobilization was significantly enhanced by CXCL8 in monocytes, indicating cooperative downstream signaling pathways during enhanced chemotaxis. Moreover, in contrast to intact CXCL12, truncated CXCL12(3-68), which has impaired receptor signaling capacity but can still desensitize CXCR4, was unable to synergize with CCL2 in monocytic cell migration. Furthermore, AMD3100 and RS102895, specific CXCR4 and CCR2 inhibitors, respectively, reduced the synergistic effect between CCL2 and CXCL12 significantly. These data indicate that for synergistic interaction between chemokines binding and signaling of the two chemokines via their proper receptors is necessary.


Blood | 2008

Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation.

Tamara Loos; Anneleen Mortier; Mieke Gouwy; Isabelle Ronsse; Willy Put; Jean-Pierre Lenaerts; Jozef Van Damme; Paul Proost

Interactions between chemokines and enzymes are vital in immunoregulation. Structural protein citrullination by peptidylarginine deiminase (PAD) has been associated with autoimmunity. In this report, we identified a novel naturally occurring posttranslational modification of chemokines, that is, the deimination of arginine at position 5 into citrulline of CXC chemokine ligand 10 (CXCL10) by rabbit PAD and human PAD2. Citrullination reduced (>/= 10-fold) the chemoattracting and signaling capacity of CXCL10 for CXC chemokine receptor 3 (CXCR3) transfectants; however, it did not affect CXCR3 binding. On T lymphocytes, though, citrullinated CXCL10 remained active but was again weaker than authentic CXCL10. PAD was also able to convert CXCL11, causing an impairment of CXCR3 signaling and T-cell activation, though less pronounced than for CXCL10. Similarly, receptor binding properties of CXCL11 were not altered by citrullination. However, deimination decreased heparin binding properties of both CXCL10 and CXCL11. Overall, chemokines are the first immune modulators reported of being functionally modified by citrullination. These data provide new structure-function dimensions for chemokines in leukocyte mobilization, disclosing an anti-inflammatory role for PAD. Additionally because citrullination has severe consequences for chemokine biology, this invites to reassess the involvement and impact of PAD and citrullinated peptides in inflammation, autoimmunity, and hematologic disorders.


Journal of Leukocyte Biology | 2004

Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration

Mieke Gouwy; Sofie Struyf; Julie Catusse; Paul Proost; Jozef Van Damme

The chemokine dose and the time period during which the chemotactic gradient is established determine the number of leukocytes that infiltrate inflamed tissues. At suboptimal chemokine concentrations, neutrophils may require a priming agent or a second stimulus for full activation. An interesting mode of cooperative action to reach maximal migration is synergy between chemokines. This was first observed between the plasma CC chemokine regakine‐1 and the tissue CXC chemokine ligand interleukin‐8 (IL‐8/CXCL8) in neutrophil chemotaxis. Addition of antibodies against IL‐8 or regakine‐1 in the Boyden microchamber assay abrogated this synergy. Other CC chemokines, such as CC chemokine ligand‐2 monocyte chemotactic protein‐1 (MCP‐1/CCL2), MCP‐2 (CCL8), and MCP‐3 (CCL7) as well as the CXC chemokine receptor‐4 (CXCR4) agonist stromal cell‐derived factor‐1α (SDF‐1α/CXCL12), also dose‐dependently enhanced neutrophil chemotaxis toward a suboptimal concentration of IL‐8. These chemokines synergized equally well with the anaphylatoxin C5a in neutrophil chemotaxis. Alternatively, IL‐8 and C5a did not synergize with an inactive precursor form of CXCL7, connective tissue‐activating peptide‐III/CXCL7, or the chemoattractant neutrophil‐activating peptide‐2/CXCL7. In the chemotaxis assay under agarose, MCP‐3 dose‐dependently increased the migration distance of neutrophils toward IL‐8. In addition, the combination of IL‐8 and MCP‐3 resulted in enhanced neutrophil shape change. AMD3100, a specific CXCR4 inhibitor, reduced the synergistic effect between SDF‐1α and IL‐8 significantly. SDF‐1α, but not MCP‐1, synergized with IL‐8 in chemotaxis with CXCR1‐transfected, CXCR4‐positive Jurkat cells. Thus, proinflammatory chemokines (IL‐8, MCP‐1), coinduced during infection in the tissue, synergize with each other or with constitutive chemokines (regakine‐1, SDF‐1α) to enhance the inflammatory response.


Laboratory Investigation | 2006

TLR ligands and cytokines induce CXCR3 ligands in endothelial cells: enhanced CXCL9 in autoimmune arthritis

Tamara Loos; Lies Dekeyzer; Sofie Struyf; Evemie Schutyser; Klara Gijsbers; Mieke Gouwy; Annelies Fraeyman; Willy Put; Isabelle Ronsse; Bernard Grillet; Ghislain Opdenakker; Jozef Van Damme; Paul Proost

CXC chemokines are potent attractants of neutrophil granulocytes, T cells or natural killer cells. Toll-like receptors (TLR) recognize microbial components and are also activated by endogenous molecules possibly implicated in autoimmune arthritis. In contrast to CXC chemokine ligand 8 (CXCL8), no CXC chemokine receptor 3 (CXCR3) ligand (ie CXCL9, CXCL10 and CXCL11) was induced by bacterial TLR ligands in human microvascular endothelial cells (HMVEC). However, peptidoglycan (PGN), double-stranded (ds) RNA or lipopolysaccharide (LPS) (TLR2, TLR3 or TLR4 ligands, respectively) synergized with interferon-γ (IFN-γ) at inducing CXCL9 and CXCL10. In contrast, enhanced CXCL11 secretion was only obtained when IFN-γ was combined with TLR3 ligand. Furthermore, flagellin, loxoribine and unmethylated CpG oligonucleotide (TLR5, TLR7 and TLR9 ligands, respectively) did not enhance IFN-γ-dependent CXCR3 ligand production in HMVEC. In analogy with TLR ligands, tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β), in combination with IFN-γ, synergistically induced CXCL9 and CXCL11 in HMVEC and human fibroblasts, two fundamental cell types delineating the joint cavity. Etanercept, a humanized soluble recombinant p75 TNF-receptor/IgG1Fc fusionprotein, neutralized synergistic CXCL9 production induced by TNF-α plus IFN-γ, but not synergy between IFN-γ and the TLR ligands PGN or LPS. Synovial chemokine concentrations exemplify the fysiopathological relevance of the observed in vitro chemokine production patterns. In synovial fluids of patients with spondylarthropathies (ie ankylosing spondylitis or psoriatic arthritis) or rheumatoid arthritis, significantly enhanced CXCL9, but not CXCL11 levels, were detected compared to concentrations in synovial fluids of patients with metabolic crystal-induced arthritis. Thus, CXCL9 is an important chemokine in autoimmune arthritis.


Experimental Cell Research | 2011

Effect of posttranslational processing on the in vitro and in vivo activity of chemokines.

Anneleen Mortier; Mieke Gouwy; Jozef Van Damme; Paul Proost

The CXC and CC chemokine gene clusters provide an abundant number of chemotactic factors selectively binding to shared G protein-coupled receptors (GPCR). Hence, chemokines function in a complex network to mediate migration of the various leukocyte subsets, expressing specific GPCRs during the immune response. Further fine-tuning of the chemokine system is reached through specific posttranslational modifications of the mature proteins. Indeed, enzymatic processing of chemokines during an early phase of inflammation leads to activation of precursor molecules or cleavage into even more active or receptor specific chemokine isoforms. At a further stage, proteolytic processing leads to loss of GPCR signaling, thereby providing natural chemokine receptor antagonists. Finally, further NH(2)-terminal cleavage results in complete inactivation to dampen the inflammatory response. During inflammatory responses, the two chemokines which exist in a membrane-bound form may be released by proteases from the cellular surface. In addition to proteolytic processing, citrullination and glycosylation of chemokines is also important for their biological activity. In particular, citrullination of arginine residues seems to reduce the inflammatory activity of chemokines in vivo. This goes along with other positive and negative regulatory mechanisms for leukocyte migration, such as chemokine synergy and scavenging by decoy receptors.


Journal of Immunology | 2009

Citrullination of CXCL12 Differentially Reduces CXCR4 and CXCR7 Binding with Loss of Inflammatory and Anti-HIV-1 Activity via CXCR4

Sofie Struyf; Samuel Noppen; Tamara Loos; Anneleen Mortier; Mieke Gouwy; Hannelien Verbeke; Dana Huskens; Souphalone Luangsay; Marc Parmentier; Karel Geboes; Dominique Schols; Jo Van Damme; Paul Proost

Posttranslational proteolytic processing of chemokines is a natural mechanism to regulate inflammation. In this study, we describe modification of the CXC chemokine stromal cell-derived factor 1α/CXCL12 by peptidylarginine deiminase (PAD) that converts arginine residues into citrulline (Cit), thereby reducing the number of positive charges. The three NH2-terminal arginines of CXCL12, Arg8, Arg12, and Arg20, were citrullinated upon incubation with PAD. The physiologic relevance of citrullination was demonstrated by showing coexpression of CXCL12 and PAD in Crohn’s disease. Three CXCL12 isoforms were synthesized for biologic characterization: CXCL12-1Cit, CXCL12-3Cit, and CXCL12-5Cit, in which Arg8, Arg8/Arg12/Arg20, or all five arginines were citrullinated, respectively. Replacement of only Arg8 caused already impaired (30-fold reduction) CXCR4 binding and signaling (calcium mobilization, phosphorylation of ERK and protein kinase B) properties. Interaction with CXCR4 was completely abolished for CXCL12-3Cit and CXCL12-5Cit. However, the CXCR7-binding capacities of CXCL12-1Cit and CXCL12-3Cit were, respectively, intact and reduced, whereas CXCL12-5Cit failed to bind CXCR7. In chemotaxis assays with lymphocytes and monocytes, CXCL12-3Cit and CXCL12-5Cit were completely devoid of activity, whereas CXCL12-1Cit, albeit at higher concentrations than CXCL12, induced migration. The antiviral potency of CXCL12-1Cit was reduced compared with CXCL12 and CXCL12-3Cit and CXCL12-5Cit (maximal dose 200 nM) could not inhibit infection of lymphocytic MT-4 cells with the HIV-1 strains NL4.3 and HE. In conclusion, modification of CXCL12 by one Cit severely impaired the CXCR4-mediated biologic effects of this chemokine and maximally citrullinated CXCL12 was inactive. Therefore, PAD is a potent physiologic down-regulator of CXCL12 function.


Blood | 2011

Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3

Sofie Struyf; Laura Salogni; Marie D. Burdick; Jo Vandercappellen; Mieke Gouwy; Samuel Noppen; Paul Proost; Ghislain Opdenakker; Marc Parmentier; Craig Gerard; Silvano Sozzani; Robert M. Strieter; Jo Van Damme

We investigated possible cellular receptors for the human CXC chemokine platelet factor-4 variant/CXCL4L1, a potent inhibitor of angiogenesis. We found that CXCL4L1 has lower affinity for heparin and chondroitin sulfate-E than platelet factor-4 (CXCL4) and showed that CXCL10 and CXCL4L1 could displace each other on microvascular endothelial cells. Labeled CXCL4L1 also bound to CXCR3A- and CXCR3B-transfectants and was displaced by CXCL4L1, CXCL4, and CXCL10. The CXCL4L1 anti-angiogenic activity was blocked by anti-CXCR3 antibodies (Abs) in the Matrigel and cornea micropocket assays. CXCL4L1 application in CXCR3(-/-) or in wild-type mice treated with neutralizing anti-CXCR3 Abs, resulted in reduced inhibitory activity of CXCL4L1 on tumor growth and vascularization of Lewis lung carcinoma. Furthermore, CXCL4L1 and CXCL4 chemoattracted activated T cells, human natural killer cells, and human immature dendritic cells (DCs). Migration of DCs toward CXCL4 and CXCL4L1 was desensitized by preincubation with CXCL10 and CXCL11, inhibited by pertussis toxin, and neutralized by anti-CXCR3 Abs. Chemotaxis of T cells, natural killer cells, and DCs is likely to contribute to the antitumoral action. However, the in vivo data indicate that the angiostatic property of CXCL4L1 is equally important in retarding tumor growth. Thus, both CXCR3A and CXCR3B are implicated in the chemotactic and vascular effects of CXCL4L1.


Arthritis Research & Therapy | 2006

Coexpression and interaction of CXCL10 and CD26 in mesenchymal cells by synergising inflammatory cytokines: CXCL8 and CXCL10 are discriminative markers for autoimmune arthropathies

Paul Proost; Sofie Struyf; Tamara Loos; Mieke Gouwy; Evemie Schutyser; René Conings; Isabelle Ronsse; Marc Parmentier; Bernard Grillet; Ghislain Opdenakker; Jan Balzarini; Jozef Van Damme

Leukocyte infiltration during acute and chronic inflammation is regulated by exogenous and endogenous factors, including cytokines, chemokines and proteases. Stimulation of fibroblasts and human microvascular endothelial cells with the inflammatory cytokines interleukin-1β (IL-1β) or tumour necrosis factor alpha (TNF-α) combined with either interferon-α (IFN-α), IFN-β or IFN-γ resulted in a synergistic induction of the CXC chemokine CXCL10, but not of the neutrophil chemoattractant CXCL8. In contrast, simultaneous stimulation with different IFN types did not result in a synergistic CXCL10 protein induction. Purification of natural CXCL10 from the conditioned medium of fibroblasts led to the isolation of CD26/dipeptidyl peptidase IV-processed CXCL10 missing two NH2-terminal residues. In contrast to intact CXCL10, NH2-terminally truncated CXCL10(3–77) did not induce extracellular signal-regulated kinase 1/2 or Akt/protein kinase B phosphorylation in CXC chemokine receptor 3-transfected cells. Together with the expression of CXCL10, the expression of membrane-bound CD26/dipeptidyl peptidase IV was also upregulated in fibroblasts by IFN-γ, by IFN-γ plus IL-1β or by IFN-γ plus TNF-α. This provides a negative feedback for CXCL10-dependent chemotaxis of activated T cells and natural killer cells. Since TNF-α and IL-1β are implicated in arthritis, synovial concentrations of CXCL8 and CXCL10 were compared in patients suffering from crystal arthritis, ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. All three groups of autoimmune arthritis patients (ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis) had significantly increased synovial CXCL10 levels compared with crystal arthritis patients. In contrast, compared with crystal arthritis, only rheumatoid arthritis patients, and not ankylosing spondylitis or psoriatic arthritis patients, had significantly higher synovial CXCL8 concentrations. Synovial concentrations of the neutrophil chemoattractant CXCL8 may therefore be useful to discriminate between autoimmune arthritis types.


Journal of Biological Chemistry | 2010

Posttranslational Modification of the NH2-terminal Region of CXCL5 by Proteases or Peptidylarginine Deiminases (PAD) Differently Affects Its Biological Activity

Anneleen Mortier; Tamara Loos; Mieke Gouwy; Isabelle Ronsse; Jozef Van Damme; Paul Proost

Posttranslational modifications, e.g. proteolysis, glycosylation, and citrullination regulate chemokine function, affecting leukocyte migration during inflammatory responses. Here, modification of CXCL5/epithelial cell-derived neutrophil-activating protein-78 (ENA-78) by proteases or peptidylarginine deiminases (PAD) was evaluated. Slow CXCL5(1–78) processing by the myeloid cell marker aminopeptidase N/CD13 into CXCL5(2–78) hardly affected its in vitro activity, but slowed down the activation of CXCL5 by the neutrophil protease cathepsin G. PAD, an enzyme with a potentially important function in autoimmune diseases, site-specifically deiminated Arg9 in CXCL5 to citrulline, generating [Cit9]CXCL5(1–78). Compared with CXCL5(1–78), [Cit9]CXCL5(1–78) less efficiently induced intracellular calcium signaling, phosphorylation of extracellular signal-regulated kinase, internalization of CXCR2, and in vitro neutrophil chemotaxis. In contrast, conversion of CXCL5 into the previously reported natural isoform CXCL5(8–78) provided at least 3-fold enhanced biological activity in these tests. Citrullination, but not NH2-terminal truncation, reduced the capacity of CXCL5 to up-regulate the expression of the integrin α-chain CD11b on neutrophils. Truncation nor citrullination significantly affected the ability of CXCL5 to up-regulate CD11a expression or shedding of CD62L. In line with the in vitro results, CXCL5(8–78) and CXCL5(9–78) induced a more pronounced neutrophil influx in vivo compared with CXCL5(1–78). Administration of 300 pmol of either CXCL5(1–78) or [Cit9]CXCL5(1–78) failed to attract neutrophils to the peritoneal cavity. Citrullination of the more potent CXCL5(9–78) lowers its chemotactic potency in vivo and confirms the tempering effect of citrullination in vitro. The highly divergent effects of modifications of CXCL5 on neutrophil influx underline the potential importance of tissue-specific interactions between chemokines and PAD or proteases.

Collaboration


Dive into the Mieke Gouwy's collaboration.

Top Co-Authors

Avatar

Sofie Struyf

University of California

View shared research outputs
Top Co-Authors

Avatar

Paul Proost

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jozef Van Damme

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ghislain Opdenakker

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jo Van Damme

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anneleen Mortier

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Tamara Loos

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Evemie Schutyser

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Isabelle Ronsse

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Marc Parmentier

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge