Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mieke Schutte is active.

Publication


Featured researches published by Mieke Schutte.


Science | 1996

DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1

Stephan A. Hahn; Mieke Schutte; A. T. M. Shamsul Hoque; Christopher A. Moskaluk; Luis T. da Costa; Ester Rozenblum; Craig L. Weinstein; Aryeh Fischer; Charles J. Yeo; Ralph H. Hruban; Scott E. Kern

About 90 percent of human pancreatic carcinomas show allelic loss at chromosome 18q. To identify candidate tumor suppressor genes on 18q, a panel of pancreatic carcinomas were analyzed for convergent sites of homozygous deletion. Twenty-five of 84 tumors had homozygous deletions at 18q21.1, a site that excludes DCC (a candidate suppressor gene for colorectal cancer) and includes DPC4, a gene similar in sequence to a Drosophila melanogaster gene (Mad) implicated in a transforming growth factor-β (TGF-β)-like signaling pathway. Potentially inactivating mutations in DPC4 were identified in six of 27 pancreatic carcinomas that did not have homozygous deletions at 18q21.1. These results identify DPC4 as a candidate tumor suppressor gene whose inactivation may play a role in pancreatic and possibly other human cancers.


Nature Genetics | 1994

Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma

Carlos Caldas; Stephan A. Hahn; Luis T. da Costa; Mark Redston; Mieke Schutte; Albert B. Seymour; Craig L. Weinstein; Ralph H. Hruban; Charles J. Yeo; Scott E. Kern

The MTS1 gene on chromosome 9p21 encodes the p16 inhibitor of cyclinD/Cdk-4 complexes, and is deleted or mutated in a variety of tumour types. We found allelic deletions of 9p21–p22 in 85% of pancreatic adenocarcinomas. Analysis of MTS1 in pancreatic carcinomas (27 xenografts and 10 cell lines) showed homozygous deletions in 15 (41%) and sequence changes in 14 (38%). These included eight point mutations (four nonsense, two missense and two splice site mutations) and six deletions/ insertions, all accompanied by loss of the wild-type allele. Sequencing of MTS1 from primary tumours confirmed the mutations. Coexistent inactivations of both MTS1 and p53 was common and suggests that abnormal regulation of cyclin-dependent kinases may play an important role in the biology of pancreatic carcinoma.


Nature Genetics | 2002

Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations

Hanne Meijers-Heijboer; Ans van den Ouweland; J.G.M. Klijn; Marijke Wasielewski; Anja de Snoo; Rogier A. Oldenburg; Antoinette Hollestelle; Mark M. J. Houben; Ellen Crepin; Monique van Veghel-Plandsoen; Fons Elstrodt; Cornelia van Duijn; C.C.M. Bartels; Carel Meijers; Mieke Schutte; Lesley McGuffog; Deborah Thompson; Douglas F. Easton; Nayanta Sodha; Sheila Seal; Rita Barfoot; Jon Mangion; Jenny Chang-Claude; Diana Eccles; Rosalind Eeles; D. Gareth Evans; Richard S. Houlston; Victoria Murday; Steven A. Narod; Tamara Peretz

Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer, but account for only a small fraction of breast cancer susceptibility. To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3,4,5). We show that CHEK2*1100delC, a truncating variant that abrogates the kinase activity, has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P = 0.00000003), including 13.5% of individuals from families with male breast cancer (P = 0.00015). We estimate that the CHEK2*1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer1, but account for only a small fraction of breast cancer susceptibility1,2. To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3,4,5). We show that CHEK2*1100delC, a truncating variant that abrogates the kinase activity6, has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P = 0.00000003), including 13.5% of individuals from families with male breast cancer (P = 0.00015). We estimate that the CHEK2*1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.


Nature Genetics | 2010

Genome-wide association study identifies five new breast cancer susceptibility loci

Clare Turnbull; Shahana Ahmed; Jonathan Morrison; David Pernet; Anthony Renwick; Mel Maranian; Sheila Seal; Maya Ghoussaini; Sarah Hines; Catherine S. Healey; Deborah Hughes; Margaret Warren-Perry; William Tapper; Diana Eccles; D. Gareth Evans; Maartje J. Hooning; Mieke Schutte; Ans van den Ouweland; Richard S. Houlston; Gillian Ross; Cordelia Langford; Paul Pharoah; Mike Stratton; Alison M. Dunning; Nazneen Rahman; Douglas F. Easton

Breast cancer is the most common cancer in women in developed countries. To identify common breast cancer susceptibility alleles, we conducted a genome-wide association study in which 582,886 SNPs were genotyped in 3,659 cases with a family history of the disease and 4,897 controls. Promising associations were evaluated in a second stage, comprising 12,576 cases and 12,223 controls. We identified five new susceptibility loci, on chromosomes 9, 10 and 11 (P = 4.6 × 10−7 to P = 3.2 × 10−15). We also identified SNPs in the 6q25.1 (rs3757318, P = 2.9 × 10−6), 8q24 (rs1562430, P = 5.8 × 10−7) and LSP1 (rs909116, P = 7.3 × 10−7) regions that showed more significant association with risk than those reported previously. Previously identified breast cancer susceptibility loci were also found to show larger effect sizes in this study of familial breast cancer cases than in previous population-based studies, consistent with polygenic susceptibility to the disease.


Molecular Cancer Research | 2007

Phosphatidylinositol-3-OH Kinase or RAS Pathway Mutations in Human Breast Cancer Cell Lines

Antoinette Hollestelle; Fons Elstrodt; Jord H. A. Nagel; Wouter W. Kallemeijn; Mieke Schutte

Constitutive activation of the phosphatidylinositol-3-OH kinase (PI3K) and RAS signaling pathways are important events in tumor formation. This is illustrated by the frequent genetic alteration of several key players from these pathways in a wide variety of human cancers. Here, we report a detailed sequence analysis of the PTEN, PIK3CA, KRAS, HRAS, NRAS, and BRAF genes in a collection of 40 human breast cancer cell lines. We identified a surprisingly large proportion of cell lines with mutations in the PI3K or RAS pathways (54% and 25%, respectively), with mutants for each of the six genes. The PIK3CA, KRAS, and BRAF mutation spectra of the breast cancer cell lines were similar to those of colorectal cancers. Unlike in colorectal cancers, however, mutational activation of the PI3K pathway was mutually exclusive with mutational activation of the RAS pathway in all but 1 of 30 mutant breast cancer cell lines (P = 0.001). These results suggest that there is a fine distinction between the signaling activators and downstream effectors of the oncogenic PI3K and RAS pathways in breast epithelium and those in other tissues. (Mol Cancer Res 2007;5(2):195–201)


American Journal of Human Genetics | 2003

The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype.

Hanne Meijers-Heijboer; Juul T. Wijnen; Hans F. A. Vasen; Marijke Wasielewski; Anja Wagner; Antoinette Hollestelle; Fons Elstrodt; Renate van den Bos; Anja de Snoo; Grace Tjon A Fat; Cecile T.M. Brekelmans; Shantie Jagmohan; Patrick Franken; Paul Verkuijlen; Ans van den Ouweland; Pamela Chapman; Carli M. J. Tops; Gabriela Möslein; John Burn; Henry T. Lynch; J.G.M. Klijn; Riccardo Fodde; Mieke Schutte

Because of genetic heterogeneity, the identification of breast cancer-susceptibility genes has proven to be exceedingly difficult. Here, we define a new subset of families with breast cancer characterized by the presence of colorectal cancer cases. The 1100delC variant of the cell cycle checkpoint kinase CHEK2 gene was present in 18% of 55 families with hereditary breast and colorectal cancer (HBCC) as compared with 4% of 380 families with non-HBCC (P<.001), thus providing genetic evidence for the HBCC phenotype. The CHEK2 1100delC mutation was, however, not the major predisposing factor for the HBCC phenotype but appeared to act in synergy with another, as-yet-unknown susceptibility gene(s). The unequivocal definition of the HBCC phenotype opens new avenues to search for this putative HBCC-susceptibility gene.


Breast Cancer Research and Treatment | 2010

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

Antoinette Hollestelle; Jord H. A. Nagel; Marcel Smid; Suzanne Lam; Fons Elstrodt; Marijke Wasielewski; Ser Sue Ng; Pim J. French; Justine K. Peeters; Marieke J. Rozendaal; Muhammad Riaz; Daphne G. Koopman; Timo L.M. ten Hagen; Bertie de Leeuw; E.C. Zwarthoff; Amina Teunisse; Peter J. van der Spek; J.G.M. Klijn; Winand N.M. Dinjens; Stephen P. Ethier; Hans Clevers; Aart G. Jochemsen; Michael A. den Bakker; John A. Foekens; John W. M. Martens; Mieke Schutte

Breast cancer has for long been recognized as a highly diverse tumor group, but the underlying genetic basis has been elusive. Here, we report an extensive molecular characterization of a collection of 41 human breast cancer cell lines. Protein and gene expression analyses indicated that the collection of breast cancer cell lines has retained most, if not all, molecular characteristics that are typical for clinical breast cancers. Gene mutation analyses identified 146 oncogenic mutations among 27 well-known cancer genes, amounting to an average of 3.6 mutations per cell line. Mutations in genes from the p53, RB and PI3K tumor suppressor pathways were widespread among all breast cancer cell lines. Most important, we have identified two gene mutation profiles that are specifically associated with luminal-type and basal-type breast cancer cell lines. The luminal mutation profile involved E-cadherin and MAP2K4 gene mutations and amplifications of Cyclin D1, ERBB2 and HDM2, whereas the basal mutation profile involved BRCA1, RB1, RAS and BRAF gene mutations and deletions of p16 and p14ARF. These subtype-specific gene mutation profiles constitute a genetic basis for the heterogeneity observed among human breast cancers, providing clues for their underlying biology and providing guidance for targeted pharmacogenetic intervention in breast cancer patients.


Cancer Research | 2006

BRCA1 Mutation Analysis of 41 Human Breast Cancer Cell Lines Reveals Three New Deleterious Mutants

Fons Elstrodt; Antoinette Hollestelle; Jord H. A. Nagel; Michael A. Gorin; Marijke Wasielewski; Ans van den Ouweland; Sofia D. Merajver; Stephen P. Ethier; Mieke Schutte

Germ line mutations of the BRCA1 gene confer a high risk of breast cancer and ovarian cancer to female mutation carriers. The BRCA1 protein is involved in the regulation of DNA repair. How specific tumor-associated mutations affect the molecular function of BRCA1, however, awaits further elucidation. Cell lines that harbor BRCA1 gene mutations are invaluable tools for such functional studies. Up to now, the HCC1937 cell line was the only human breast cancer cell line with an identified BRCA1 mutation. In this study, we identified three other BRCA1 mutants from among 41 human breast cancer cell lines by sequencing of the complete coding sequence of BRCA1. Cell line MDA-MB-436 had the 5396 + 1G>A mutation in the splice donor site of exon 20. Cell line SUM149PT carried the 2288delT mutation and SUM1315MO2 carried the 185delAG mutation. All three mutations were accompanied by loss of the other BRCA1 allele. The 185delAG and 5396 + 1G>A mutations are both classified as pathogenic mutations. In contrast with wild-type cell lines, none of the BRCA1 mutants expressed nuclear BRCA1 proteins as detected with Ab-1 and Ab-2 anti-BRCA1 monoclonal antibodies. These three new human BRCA1 mutant cell lines thus seem to be representative breast cancer models that could aid in further unraveling of the function of BRCA1.


American Journal of Human Genetics | 2003

Variants in CHEK2 Other than 1100delC Do Not Make a Major Contribution to Breast Cancer Susceptibility

Mieke Schutte; Sheila Seal; Rita Barfoot; Hanne Meijers-Heijboer; Marijke Wasielewski; D. Gareth Evans; Diana Eccles; Carel Meijers; Frans Lohman; J.G.M. Klijn; Ans van den Ouweland; P. Andrew Futreal; Katherine L. Nathanson; Barbara L. Weber; Douglas F. Easton; Michael R. Stratton; Nazneen Rahman

We recently reported that a sequence variant in the cell-cycle-checkpoint kinase CHEK2 (CHEK2 1100delC) is a low-penetrance breast cancer-susceptibility allele in noncarriers of BRCA1 or BRCA2 mutations. To investigate whether other CHEK2 variants confer susceptibility to breast cancer, we screened the full CHEK2 coding sequence in BRCA1/2-negative breast cancer cases from 89 pedigrees with three or more cases of breast cancer. We identified one novel germline variant, R117G, in two separate families. To evaluate the possible association of R117G and two germline variants reported elsewhere, R145W and I157T with breast cancer, we screened 737 BRCA1/2-negative familial breast cancer cases from 605 families, 459 BRCA1/2-positive cases from 335 families, and 723 controls from the United Kingdom, the Netherlands, and North America. All three variants were rare in all groups, and none occurred at significantly elevated frequency in familial breast cancer cases compared with controls. These results indicate that 1100delC may be the only CHEK2 allele that makes an appreciable contribution to breast cancer susceptibility.


Journal of Biological Chemistry | 2009

Phosphatidylinositol 3-Kinase Signaling Does Not Activate the Wnt Cascade

Ser Sue Ng; Tokameh Mahmoudi; Esther Danenberg; Inés Bejaoui; Wim de Lau; Hendrik C. Korswagen; Mieke Schutte; Hans Clevers

Mutational activation of the phosphatidylinositol 3-kinase (PI3K) pathway occurs in a wide variety of tumors, whereas activating Wnt pathway mutants are predominantly found in colon cancer. Because GSK3 is a key component of both pathways, it is widely assumed that active PI3K signaling feeds positively into the Wnt pathway by protein kinase B (PKB)-mediatefd inhibition of GSK3. In addition, PKB has been proposed to modulate the canonical Wnt signaling through direct stabilization and nuclear localization of β-catenin. Here, we show that compartmentalization by Axin of GSK3 prohibits cross-talk between the PI3K and Wnt pathways and that Wnt-mediated transcriptional activity is not modulated by activation of the PI3K/PKB pathway.

Collaboration


Dive into the Mieke Schutte's collaboration.

Top Co-Authors

Avatar

Scott E. Kern

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

J.G.M. Klijn

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marijke Wasielewski

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ans van den Ouweland

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph H. Hruban

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles J. Yeo

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Fons Elstrodt

Erasmus University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge