Mieke Wolters-Arts
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mieke Wolters-Arts.
Nature | 2005
Ashna Anjana Raghoebarsing; A.J.P. Smolders; Markus Schmid; W. Irene C. Rijpstra; Mieke Wolters-Arts; J.J.L. Derksen; Mike S. M. Jetten; Stefan Schouten; Jaap S. Sinninghe Damsté; Leon P. M. Lamers; J.G.M. Roelofs; Huub J. M. Op den Camp; Marc Strous
Wetlands are the largest natural source of atmospheric methane, the second most important greenhouse gas. Methane flux to the atmosphere depends strongly on the climate; however, by far the largest part of the methane formed in wetland ecosystems is recycled and does not reach the atmosphere. The biogeochemical controls on the efficient oxidation of methane are still poorly understood. Here we show that submerged Sphagnum mosses, the dominant plants in some of these habitats, consume methane through symbiosis with partly endophytic methanotrophic bacteria, leading to highly effective in situ methane recycling. Molecular probes revealed the presence of the bacteria in the hyaline cells of the plant and on stem leaves. Incubation with 13C-methane showed rapid in situ oxidation by these bacteria to carbon dioxide, which was subsequently fixed by Sphagnum, as shown by incorporation of 13C-methane into plant sterols. In this way, methane acts as a significant (10–15%) carbon source for Sphagnum. The symbiosis explains both the efficient recycling of methane and the high organic carbon burial in these wetland ecosystems.
Plant Journal | 2009
Maaike de Jong; Mieke Wolters-Arts; Richard Feron; Celestina Mariani; Wim H. Vriezen
Auxin response factors (ARFs) are encoded by a gene family of transcription factors that specifically control auxin-dependent developmental processes. A tomato ARF gene, homologous to Arabidopsis NPH4/ARF7 and therefore designated as Solanum lycopersicum ARF7 (SlARF7), was found to be expressed at a high level in unpollinated mature ovaries. More detailed analysis of tomato ovaries showed that the level of SlARF7 transcript increases during flower development, remains at a constant high level in mature flowers, and is down-regulated within 48 h after pollination. Transgenic plants with decreased SlARF7 mRNA levels formed seedless (parthenocarpic) fruits. These fruits were heart-shaped and had a rather thick pericarp due to increased cell expansion, compared with the pericarp of wild-type fruits. The expression analysis, together with the parthenocarpic fruit phenotype of the transgenic lines, suggests that, in tomato, SlARF7 acts as a negative regulator of fruit set until pollination and fertilization have taken place, and moderates the auxin response during fruit growth.
The Plant Cell | 2012
Marian Bemer; Rumyana Karlova; Ana Rosa Ballester; Yury Tikunov; Arnaud G. Bovy; Mieke Wolters-Arts; Priscilla de Barros Rossetto; Gerco C. Angenent; Ruud A. de Maagd
Ripening of the tomato fruit is accompanied by an increase in ethylene production and involves color changes, altered sugar metabolism, tissue softening, and the synthesis of aroma volatiles. This study shows that the MADS domain transcription factors FUL1 and FUL2 play a role in the regulation of these ripening processes, but in an ethylene-independent manner. Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter.
Plant Physiology | 2005
Liesje Mommer; Thijs L. Pons; Mieke Wolters-Arts; Jan Henk Venema; Eric J. W. Visser
Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be continued photosynthesis under water, but this possibility has received only little attention. Here, we combine several techniques to investigate the consequences of anatomical and biochemical responses of the terrestrial species Rumex palustris to submergence for different aspects of photosynthesis under water. The orientation of the chloroplasts in submergence-acclimated leaves was toward the epidermis instead of the intercellular spaces, indicating that underwater CO2 diffuses through the cuticle and epidermis. Interestingly, both the cuticle thickness and the epidermal cell wall thickness were significantly reduced upon submergence, suggesting a considerable decrease in diffusion resistance. This decrease in diffusion resistance greatly facilitated underwater photosynthesis, as indicated by higher underwater photosynthesis rates in submergence-acclimated leaves at all CO2 concentrations investigated. The increased availability of internal CO2 in these “aquatic” leaves reduced photorespiration, and furthermore reduced excitation pressure of the electron transport system and, thus, the risk of photodamage. Acclimation to submergence also altered photosynthesis biochemistry as reduced Rubisco contents were observed in aquatic leaves, indicating a lower carboxylation capacity. Electron transport capacity was also reduced in these leaves but not as strongly as the reduction in Rubisco, indicating a substantial increase of the ratio between electron transport and carboxylation capacity upon submergence. This novel finding suggests that this ratio may be less conservative than previously thought.
The Plant Cell | 2008
Marian Bemer; Mieke Wolters-Arts; Ueli Grossniklaus; Gerco C. Angenent
MADS box genes in plants consist of MIKC-type and type I genes. While MIKC-type genes have been studied extensively, the functions of type I genes are still poorly understood. Evidence suggests that type I MADS box genes are involved in embryo sac and seed development. We investigated two independent T-DNA insertion alleles of the Arabidopsis thaliana type I MADS box gene AGAMOUS-LIKE61 (AGL61) and showed that in agl61 mutant ovules, the polar nuclei do not fuse and central cell morphology is aberrant. Furthermore, the central cell begins to degenerate before fertilization takes place. Although pollen tubes are attracted and perceived by the mutant ovules, neither endosperm development nor zygote formation occurs. AGL61 is expressed in the central cell during the final stages of embryo sac development. An AGL61:green fluorescent protein–β-glucoronidase fusion protein localizes exclusively to the polar nuclei and the secondary nucleus of the central cell. Yeast two-hybrid analysis showed that AGL61 can form a heterodimer with AGL80 and that the nuclear localization of AGL61 is lost in the agl80 mutant. Thus, AGL61 and AGL80 appear to function together to differentiate the central cell in Arabidopsis. We renamed AGL61 DIANA, after the virginal Roman goddess of the hunt.
Journal of Experimental Botany | 2010
Filomena Giorno; Mieke Wolters-Arts; Stefania Grillo; Klaus-Dieter Scharf; Wim H. Vriezen; Celestina Mariani
The high sensitivity of male reproductive cells to high temperatures may be due to an inadequate heat stress response. The results of a comprehensive expression analysis of HsfA2 and Hsp17-CII, two important members of the heat stress system, in the developing anthers of a heat-tolerant tomato genotype are reported here. A transcriptional analysis at different developmental anther/pollen stages was performed using semi-quantitative and real-time PCR. The messengers were localized using in situ RNA hybridization, and protein accumulation was monitored using immunoblot analysis. Based on the analysis of the gene and protein expression profiles, HsfA2 and Hsp17-CII are finely regulated during anther development and are further induced under both short and prolonged heat stress conditions. These data suggest that HsfA2 may be directly involved in the activation of protection mechanisms in the tomato anther during heat stress and, thereby, may contribute to tomato fruit set under adverse temperatures.
Plant Physiology | 2005
Marc Bots; Frank Vergeldt; Mieke Wolters-Arts; Koen Weterings; Celestina Mariani
Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues. Before flower anthesis, anther and pollen dehydration takes place before the release of mature pollen at dehiscence. Aquaporins represent a class of proteins that mediates the movement of water over cellular membranes. Aquaporins of the plasmamembrane PIP2 family are expressed in tobacco (Nicotiana tabacum) anthers and may therefore be involved in the movement of water in this organ. To gain more insight into the role these proteins may play in this process, we have analyzed their localization using immunolocalizations and generated plants displaying RNA interference of PIP2 aquaporins. Our results indicate that PIP2 protein expression is modulated during anther development. Furthermore, in tobacco PIP2 RNA interference plants, anther dehydration was slower, and dehiscence occurred later when compared with control plants. Together, our results suggest that aquaporins of the PIP2 class are required for efficient anther dehydration prior to dehiscence.
Planta | 2003
Ivo Rieu; Mieke Wolters-Arts; J.J.L. Derksen; Celestina Mariani; Koen Weterings
We investigated the involvement of ethylene signaling in the development of the reproductive structures in tobacco (Nicotiana tabacum L.) by studying flowers that were insensitive to ethylene. Ethylene-insensitivity was generated either by expression of the mutant etr1-1 ethylene-receptor allele from Arabidopsis thaliana or by treatment with the ethylene-perception inhibitor 1-methylcyclopropene (MCP). Development of ovaries and ovules was unaffected by ethylene-insensitivity. Anther development was also unaffected, but the final event of dehiscence was delayed and was no longer synchronous with flower opening. We showed that in these anthers degeneration of the stomium cells and dehydration were delayed. In addition, we found that MCP-treatment of detached flowers and isolated, almost mature anthers delayed dehiscence whereas ethylene-treatment accelerated dehiscence. This indicated that ethylene has a direct effect on a process that takes place in the anthers just before dehiscence. Because a similar function has been described for jasmonic acid in Arabidopsis, we suggest that ethylene acts similarly to or perhaps even in concurrence with jasmonic acid as a signaling molecule controlling the processes that lead to anther dehiscence in tobacco.
Journal of Experimental Botany | 2011
Maaike de Jong; Mieke Wolters-Arts; José L. García-Martínez; Celestina Mariani; Wim H. Vriezen
Transgenic tomato plants (Solanum lycopersicum L.) with reduced mRNA levels of AUXIN RESPONSE FACTOR 7 (SlARF7) form parthenocarpic fruits with morphological characteristics that seem to be the result of both increased auxin and gibberellin (GA) responses during fruit growth. This paper presents a more detailed analysis of these transgenic lines. Gene expression analysis of auxin-responsive genes show that SlARF7 may regulate only part of the auxin signalling pathway involved in tomato fruit set and development. Also, part of the GA signalling pathway was affected by the reduced levels of SlARF7 mRNA, as morphological and molecular analyses display similarities between GA-induced fruits and fruits formed by the RNAi SlARF7 lines. Nevertheless, the levels of GAs were strongly reduced compared with that in seeded fruits. These findings indicate that SlARF7 acts as a modifier of both auxin and gibberellin responses during tomato fruit set and development.
Planta | 2009
Lisette Nitsch; Carla Oplaat; Richard Feron; Qian Ma; Mieke Wolters-Arts; Peter Hedden; Celestina Mariani; Wim H. Vriezen
Although the hormones, gibberellin and auxin, are known to play a role in the initiation of fruits, no such function has yet been demonstrated for abscisic acid (ABA). However, ABA signaling and ABA responses are high in tomato (Solanum lycopersicum L.) ovaries before pollination and decrease thereafter (Vriezen et al. in New Phytol 177:60–76, 2008). As a first step to understanding the role of ABA in ovary development and fruit set in tomato, we analyzed ABA content and the expression of genes involved in its metabolism in relation to pollination. We show that ABA levels are relatively high in mature ovaries and decrease directly after pollination, while an increase in the ABA metabolite dihydrophaseic acid was measured. An important regulator of ABA biosynthesis in tomato is 9-cis-epoxy-carotenoid dioxygenase (LeNCED1), whose mRNA level in ovaries is reduced after pollination. The increased catabolism is likely caused by strong induction of one of four newly identified putative (+)ABA 8′-hydroxylase genes. This gene was named SlCYP707A1 and is expressed specifically in ovules and placenta. Transgenic plants, overexpressing SlCYP707A1, have reduced ABA levels and exhibit ABA-deficient phenotypes suggesting that this gene encodes a functional ABA 8′-hydroxylase. Gibberellin and auxin application have different effects on the LeNCED1 and SlCYP707A1 gene expression. The crosstalk between auxins, gibberellins and ABA during fruit set is discussed.