Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miep H. Helfrich is active.

Publication


Featured researches published by Miep H. Helfrich.


Journal of Bone and Mineral Research | 2000

Protein Geranylgeranylation Is Required for Osteoclast Formation, Function, and Survival: Inhibition by Bisphosphonates and GGTI-298

Fraser P. Coxon; Miep H. Helfrich; Rob van't Hof; Said M. Sebti; Stuart H. Ralston; Andrew D. Hamilton; Michael J. Rogers

Bisphosphonates are the important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Although their molecular mechanism of action has not been fully elucidated, recent studies have shown that the nitrogen‐containing bisphosphonates can inhibit protein prenylation in macrophages in vitro. In this study, we show that the nitrogen‐containing bisphosphonates risedronate, zoledronate, ibandronate, alendronate, and pamidronate (but not the non nitrogen‐containing bisphosphonates clodronate, etidronate, and tiludronate) prevent the incorporation of [14C]mevalonate into prenylated (farnesylated and geranylgeranylated) proteins in purified rabbit osteoclasts. The inhibitory effect of nitrogen‐containing bisphosphonates on bone resorption is likely to result largely from the loss of geranylgeranylated proteins rather than loss of farnesylated proteins in osteoclasts, because concentrations of GGTI‐298 (a specific inhibitor of geranylgeranyl transferase I) that inhibited protein geranylgeranylation in purified rabbit osteoclasts prevented osteoclast formation in murine bone marrow cultures, disrupted the osteoclast cytoskeleton, inhibited bone resorption, and induced apoptosis in isolated chick and rabbit osteoclasts in vitro. By contrast, concentrations of FTI‐277 (a specific inhibitor of farnesyl transferase) that prevented protein farnesylation in purified rabbit osteoclasts had little effect on osteoclast morphology or apoptosis and did not inhibit bone resorption. These results therefore show the molecular mechanism of action of nitrogen‐containing bisphosphonate drugs in osteoclasts and highlight the fundamental importance of geranylgeranylated proteins in osteoclast formation and function.


Nature Genetics | 2007

Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL

Cristina Sobacchi; Annalisa Frattini; Matteo M Guerrini; Mario Abinun; Alessandra Pangrazio; Lucia Susani; Robbert G. M. Bredius; Grazia M.S. Mancini; Andrew J. Cant; Nick Bishop; Peter Grabowski; Andrea Del Fattore; Chiara Messina; Gabriella Errigo; Fraser P. Coxon; Debbie I Scott; Anna Teti; Michael J. Rogers; Paolo Vezzoni; Anna Villa; Miep H. Helfrich

Autosomal recessive osteopetrosis is usually associated with normal or elevated numbers of nonfunctional osteoclasts. Here we report mutations in the gene encoding RANKL (receptor activator of nuclear factor–KB ligand) in six individuals with autosomal recessive osteopetrosis whose bone biopsy specimens lacked osteoclasts. These individuals did not show any obvious defects in immunological parameters and could not be cured by hematopoietic stem cell transplantation; however, exogenous RANKL induced formation of functional osteoclasts from their monocytes, suggesting that they could, theoretically, benefit from exogenous RANKL administration.


Journal of Cell Science | 2011

Bone remodelling at a glance

Julie C. Crockett; Michael J. Rogers; Fraser P. Coxon; Lynne J. Hocking; Miep H. Helfrich

The bone remodelling cycle (see Poster panel “The bone remodelling cycle”) maintains the integrity of the skeleton through the balanced activities of its constituent cell types. These are the bone-forming osteoblast, a cell that produces the organic bone matrix and aids its mineralisation ([


Bone | 2001

Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro

H. L. Benford; N.W.A McGowan; Miep H. Helfrich; M.E Nuttall; Michael J. Rogers

Bisphosphonates inhibit osteoclast-mediated bone resorption by mechanisms that have only recently become clear. Whereas nitrogen-containing bisphosphonates affect osteoclast function by preventing protein prenylation (especially geranylgeranylation), non-nitrogen-containing bisphosphonates have a different molecular mechanism of action. In this study, we demonstrate that nitrogen-containing bisphosphonates (risedronate, alendronate, pamidronate, and zoledronic acid) and non-nitrogen-containing bisphosphonates (clodronate and etidronate) cause apoptosis of rabbit osteoclasts, human osteoclastoma-derived osteoclasts, and human osteoclast-like cells generated in cultures of bone marrow in vitro. Osteoclast apoptosis was shown to involve characteristic morphological changes, loss of mitochondrial membrane potential, and the activation of caspase-3-like proteases capable of cleaving peptide substrates with the sequence DEVD. Caspase-3-like activity could be visualized in unfixed, dying osteoclasts and osteoclast-like cells using a cell-permeable, fluorogenic substrate. Bisphosphonate-induced osteoclast apoptosis was dependent on caspase activation, because apoptosis resulting from alendronate, clodronate, or zoledronic acid treatment was suppressed by zVAD-fmk, a broad-range caspase inhibitor, or by SB-281277, a specific isatin sulfonamide inhibitor of caspase-3/-7. Furthermore, caspase-3 (but not caspase-6 or caspase-7) activity could be detected and quantitated in lysates from purified rabbit osteoclasts, whereas the p17 fragment of active caspase-3 could be detected in human osteoclast-like cells by immunofluorescence staining. Caspase-3, therefore, appears to be the major effector caspase activated in osteoclasts by bisphosphonate treatment. Caspase activation and apoptosis induced by nitrogen-containing bisphosphonates are likely to be the consequence of the loss of geranylgeranylated rather than farnesylated proteins, because the ability to cause apoptosis and caspase activation was mimicked by GGTI-298, a specific inhibitor of protein geranylgeranylation, whereas FTI-277, a specific inhibitor of protein farnesylation, had no effect on apoptosis or caspase activity.


American Journal of Human Genetics | 2008

Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations.

Matteo M Guerrini; Cristina Sobacchi; Barbara Cassani; Mario Abinun; Sara Sebnem Kilic; Alessandra Pangrazio; Daniele Moratto; Evelina Mazzolari; Jill Clayton-Smith; Paul J. Orchard; Fraser P. Coxon; Miep H. Helfrich; Julie C. Crockett; David Mellis; Ashok Vellodi; Ilhan Tezcan; Luigi D. Notarangelo; Michael J. Rogers; Paolo Vezzoni; Anna Villa; Annalisa Frattini

Autosomal-Recessive Osteopetrosis (ARO) comprises a heterogeneous group of bone diseases for which mutations in five genes are known as causative. Most ARO are classified as osteoclast-rich, but recently a subset of osteoclast-poor ARO has been recognized as due to a defect in TNFSF11 (also called RANKL or TRANCE, coding for the RANKL protein), a master gene driving osteoclast differentiation along the RANKL-RANK axis. RANKL and RANK (coded for by the TNFRSF11A gene) also play a role in the immune system, which raises the possibility that defects in this pathway might cause osteopetrosis with immunodeficiency. From a large series of ARO patients we selected a Turkish consanguineous family with two siblings affected by ARO and hypogammaglobulinemia with no defects in known osteopetrosis genes. Sequencing of genes involved in the RANKL downstream pathway identified a homozygous mutation in the TNFRSF11A gene in both siblings. Their monocytes failed to differentiate in vitro into osteoclasts upon exposure to M-CSF and RANKL, in keeping with an osteoclast-intrinsic defect. Immunological analysis showed that their hypogammaglobulinemia was associated with impairment in immunoglobulin-secreting B cells. Investigation of other patients revealed a defect in both TNFRSF11A alleles in six additional, unrelated families. Our results indicate that TNFRSF11A mutations can cause a clinical condition in which severe ARO is associated with an immunoglobulin-production defect.


Endocrinology | 2001

Defective Bone Formation and Anabolic Response to Exogenous Estrogen in Mice with Targeted Disruption of Endothelial Nitric Oxide Synthase1

Katharine E. Armour; Kenneth J. Armour; Marie E. Gallagher; Axel Gödecke; Miep H. Helfrich; David M. Reid; Stuart H. Ralston

Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone norma...


Nature Reviews Endocrinology | 2013

Osteopetrosis: genetics, treatment and new insights into osteoclast function.

Cristina Sobacchi; Ansgar Schulz; Fraser P. Coxon; Anna Villa; Miep H. Helfrich

Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.


Molecular Cell | 2015

PLEKHM1 Regulates Autophagosome-Lysosome Fusion through HOPS Complex and LC3/GABARAP Proteins

David G. McEwan; Doris Popovic; Andrea Gubas; Seigo Terawaki; Hironori Suzuki; Daniela Stadel; Fraser P. Coxon; Diana Miranda de Stegmann; Sagar Bhogaraju; Karthik Maddi; Anja Kirchof; Evelina Gatti; Miep H. Helfrich; Soichi Wakatsuki; Christian Behrends; Philippe Pierre; Ivan Dikic

The lysosome is the final destination for degradation of endocytic cargo, plasma membrane constituents, and intracellular components sequestered by macroautophagy. Fusion of endosomes and autophagosomes with the lysosome depends on the GTPase Rab7 and the homotypic fusion and protein sorting (HOPS) complex, but adaptor proteins that link endocytic and autophagy pathways with lysosomes are poorly characterized. Herein, we show that Pleckstrin homology domain containing protein family member 1 (PLEKHM1) directly interacts with HOPS complex and contains a LC3-interacting region (LIR) that mediates its binding to autophagosomal membranes. Depletion of PLEKHM1 blocks lysosomal degradation of endocytic (EGFR) cargo and enhances presentation of MHC class I molecules. Moreover, genetic loss of PLEKHM1 impedes autophagy flux upon mTOR inhibition and PLEKHM1 regulates clearance of protein aggregates in an autophagy- and LIR-dependent manner. PLEKHM1 is thus a multivalent endocytic adaptor involved in the lysosome fusion events controlling selective and nonselective autophagy pathways.


Journal of Clinical Investigation | 2007

Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans

Liesbeth Van Wesenbeeck; Paul R. Odgren; Fraser P. Coxon; Annalisa Frattini; Pierre Moens; Bram Perdu; Carole A. MacKay; Els Van Hul; Jean Pierre Timmermans; Filip Vanhoenacker; Ruben Jacobs; Barbara Peruzzi; Anna Teti; Miep H. Helfrich; Michael J. Rogers; Anna Villa; Wim Van Hul

This study illustrates that Plekhm1 is an essential protein for bone resorption, as loss-of-function mutations were found to underlie the osteopetrotic phenotype of the incisors absent rat as well as an intermediate type of human osteopetrosis. Electron and confocal microscopic analysis demonstrated that monocytes from a patient homozygous for the mutation differentiated into osteoclasts normally, but when cultured on dentine discs, the osteoclasts failed to form ruffled borders and showed little evidence of bone resorption. The presence of both RUN and pleckstrin homology domains suggests that Plekhm1 may be linked to small GTPase signaling. We found that Plekhm1 colocalized with Rab7 to late endosomal/lysosomal vesicles in HEK293 and osteoclast-like cells, an effect that was dependent on the prenylation of Rab7. In conclusion, we believe PLEKHM1 to be a novel gene implicated in the development of osteopetrosis, with a putative critical function in vesicular transport in the osteoclast.


Journal of Bone and Mineral Research | 1997

Expression of Nitric Oxide Synthase Isoforms in Bone and Bone Cell Cultures

Miep H. Helfrich; Deborah E. Evans; Peter Grabowski; Jennifer S. Pollock; Hiroshi Ohshima; Stuart H. Ralston

Recent work has shown that nitric oxide (NO) acts as an important mediator of the effects of proinflammatory cytokines and mechanical strain in bone. Although several bone‐derived cells have been shown to produce NO in vitro, less is known about the isoforms of NO synthase (NOS), which are expressed in bone or their cellular distribution. Here we investigated the expression, cellular localization, and regulation of NOS mRNA and protein in cultured bone‐derived cells and in bone tissue sections. We failed to detect inducible NOS (iNOS) protein in normal bone using immunohistochemical techniques, even though low levels of iNOS mRNA were detected by sensitive reverse transcribed polymerase chain reaction (RT‐PCR) assays in RNA extracted from whole bone samples. Cytokine stimulation of bone‐derived cells and bone explant cultures caused dramatic induction of iNOS mRNA and protein in osteoblasts and bone marrow macrophages, but no evidence of iNOS expression was seen in osteoclasts by immunohistochemistry or in situ hybridization. Endothelial NOS (ecNOS) mRNA was also detected by RT‐PCR in whole bone, and immunohistochemical studies showed widespread ecNOS expression in bone marrow cells and trabecular lining cells in vivo. Related studies in vitro confirmed that ecNOS was expressed in cultured osteoblasts, stromal cells, and osteoclasts. Neuronal NOS mRNA was detected by RT‐PCR in whole bone, but we were unable to detect nNOS protein in bone cells in vivo or in studies of cultured bone‐derived cells in vitro. In summary, our data show that mRNAs for all three NOS isoforms are expressed in bone and provide evidence for differential expression and regulation of the enzymes in different cell types. These findings confirm the likely importance of the L‐arginine–NO pathway as a physiological mediator of bone cell function and demonstrate that it may be possible to exert differential effects on osteoblast and osteoclast activity in vivo by differential targeting of constitutive and inducible NOS isoforms by selective NOS inhibitors.

Collaboration


Dive into the Miep H. Helfrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Rogers

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Horton

London Centre for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Villa

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge