Miguel A. de Barros Lopes
University of South Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel A. de Barros Lopes.
Applied and Environmental Microbiology | 2005
Kate Howell; Mathias Klein; Jan H. Swiegers; Yoji Hayasaka; Gordon M. Elsey; Graham H. Fleet; P. B. Høj; Isak S. Pretorius; Miguel A. de Barros Lopes
ABSTRACT Volatile thiols, particularly 4-mercapto-4-methylpentan-2-one (4MMP), make an important contribution to the aroma of wine. During wine fermentation, Saccharomyces cerevisiae mediates the cleavage of a nonvolatile cysteinylated precursor in grape juice (Cys-4MMP) to release the volatile thiol 4MMP. Carbon-sulfur lyases are anticipated to be involved in this reaction. To establish the mechanism of 4MMP release and to develop strains that modulate its release, the effect of deleting genes encoding putative yeast carbon-sulfur lyases on the cleavage of Cys-4MMP was tested. The results led to the identification of four genes that influence the release of the volatile thiol 4MMP in a laboratory strain, indicating that the mechanism of release involves multiple genes. Deletion of the same genes from a homozygous derivative of the commercial wine yeast VL3 confirmed the importance of these genes in affecting 4MMP release. A strain deleted in a putative carbon-sulfur lyase gene, YAL012W, produced a second sulfur compound at significantly higher concentrations than those produced by the wild-type strain. Using mass spectrometry, this compound was identified as 2-methyltetrathiophen-3-one (MTHT), which was previously shown to contribute to wine aroma but was of unknown biosynthetic origin. The formation of MTHT in YAL012W deletion strains indicates a yeast biosynthetic origin of MTHT. The results demonstrate that the mechanism of synthesis of yeast-derived wine aroma components, even those present in small concentrations, can be investigated using genetic screens.
Applied Microbiology and Biotechnology | 2011
Jennifer R. Bellon; Jeffery M. Eglinton; Tracey Siebert; Alan P. Pollnitz; Louisa Rose; Miguel A. de Barros Lopes; Paul J. Chambers
Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.
Developments in food science | 2006
Jan H. Swiegers; Robyn Willmott; Alana Hill-Ling; Dimitra L. Capone; Kevin H. Pardon; Gordon M. Elsey; Kate Howell; Miguel A. de Barros Lopes; Mark A. Sefton; Mariska Lilly; Isak S. Pretorius
The volatile thiols, in particular 4-mercapto-4-methylpentan-2-one (4MMP), 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) are potent aroma shown to contribute strongly to the varietal aroma of Sauvignon Blanc wines. The thiols 4MMP and 3MH exist as non-volatile, aroma-inactive cysteine bound conjugates in the grape must and during fermentation the thiol is cleaved from the precursor. However, no cysteine conjugate for 3MHA has been identified. In this work we showed that 3MHA is formed from 3MH by the wine yeast Saccharomyces cerevisiae during fermentation. Furthermore, the alcohol acetyltransferase, Atf1p, the enzyme involved in the formation of the ester ethyl acetate, was shown to be the main enzyme responsible for the formation of 3MHA. Both a laboratory yeast and a commercial wine yeast overexpressing the ATF1 gene produced significantly more 3MHA than the wild-type. Although an atf1Δ laboratory yeast strain showed reduced 3MHA formation, it was not abolished, indicating that other enzymes are also responsible for its formation. Therefore, overexpression of the ATF1 gene in a wine yeast presents the possiblity of modulating both the thiol and ester aromas in wine.
Journal of Agricultural and Food Chemistry | 2009
Simon A. Schmidt; Ee Leng Tan; Shauna Liam Brown; Uli J. Nasution; Filomena Pettolino; Oenone Macintyre; Miguel A. de Barros Lopes; Elizabeth J. Waters; Peter A. Anderson
Grape-derived proteins can form haze in wine. Some cell-wall glycoproteins of Saccharomyces cerevisiae are capable of reducing protein haze formation. The basis of their haze protective activity is not yet understood. One of the S. cerevisiae cell-wall proteins, Hpf2, was produced in Pichia pastoris . An altered glycan structure in the P. pastoris -produced protein was associated with decreased solubility in water and reduced capacity to mitigate haze formation compared to native Hpf2 protein from S. cerevisiae. alpha-1,2-Linked mannose in the glycan chain was shown to be required for haze protective activity using a series of S. cerevisiae deletion mutants (mnn1-Delta, mnn2-Delta, mnn4-Delta, and mnn5-Delta), defective in different aspects of glycan processing. The effect of media additives phthalate, casamino acids, and yeast nitrogen base on Hpf2 production in P. pastoris were also evaluated. Casamino acids were shown to suppress Hpf2 production in P. pastoris .
FEBS Letters | 2011
Sylvie Callegari; Ross A. McKinnon; Stuart Andrews; Miguel A. de Barros Lopes
The Saccharomyces cerevisiae MEF2 gene is a mitochondrial protein translation factor. Formerly believed to catalyze peptide elongation, evidence now suggests its involvement in ribosome recycling. This study confirms the role of the MEF2 gene for cell respiration and further uncovers a slow growth phenotype and reduced chronological lifespan. Furthermore, in comparison with cytoplasmic ρ0 strains, mef2Δ strains have a marked reduction of the inner mitochondrial membrane potential and mitochondria show a tendency to aggregate, suggesting an additional role for the MEF2 gene in maintenance of mitochondrial health, a role that may also be shared by other mitochondrial protein synthesis factors.
Fems Yeast Research | 2010
Sylvie Callegari; Ross A. McKinnon; Stuart Andrews; Miguel A. de Barros Lopes
Statins, used to treat hypercholesterolemia, are one of the most frequently prescribed drug classes in the developed world. However, a significant proportion of users suffer symptoms of myotoxicity, and currently, the molecular mechanisms underlying myotoxicity remain ambiguous. In this study, Saccharomyces cerevisiae was exploited as a model system to gain further insight into the molecular mechanisms of atorvastatin toxicity. Atorvastatin-treated yeast cells display marked morphological deformities, have reduced cell viability and are highly vulnerable to perturbed mitochondrial function. Supplementation assays of atorvastatin-treated cells reveal that both loss of viability and mitochondrial dysfunction occur as a consequence of perturbation of the sterol synthesis pathway. This was further investigated by supplementing statin-treated cells with various metabolites of the sterol synthesis pathway that are believed to be essential for cell function. Ergosterol, coenzyme Q and a heme precursor were all ineffective in the prevention of statin-induced mitochondrial disruption and cell death. However, the addition of geranylgeranyl pyrophosphate and farnesyl pyrophosphate significantly restored cell viability, although these did not overcome petite induction. This highlights the pleiotropic nature of statin toxicity, but has established protein prenylation disruption as one of the principal mechanisms underlying statin-induced cell death in yeast.
Bioorganic & Medicinal Chemistry Letters | 2017
Yinhu Wang; Rumana Mowla; Liwei Guo; Abiodun D. Ogunniyi; Taufiq Rahman; Miguel A. de Barros Lopes; Shutao Ma; Henrietta Venter
Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps.
PLOS Genetics | 2012
Sylvie Callegari; Philip A. Gregory; Matthew J. Sykes; Jennifer R. Bellon; Stuart Andrews; Ross A. McKinnon; Miguel A. de Barros Lopes
Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the Elongation Factor Gene (EF-G) 2, which has previously been shown to play a specific role in mitochondrial ribosome recycling. Using small interfering RNA (siRNA) silencing of expression in human cell lines, we demonstrate that the EF-G2mt gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration. Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms (SNPs) in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans.
Food Chemistry | 2018
Tracey Siebert; Alice Barker; Sheridan R. Barter; Miguel A. de Barros Lopes; Markus Herderich; I. Leigh Francis
(Z)-6-Dodeceno-γ-lactone is a potent aroma compound that has been little studied and its prevalence in wines is unknown. An efficient stable isotope dilution assay was developed using a simple, direct immersion solid-phase microextraction and gas chromatography-tandem mass spectrometry method suitable for routine use with a low ng/L limit of quantitation. Using this method, 99 out of 104 young white wines analysed were found to contain detectable (Z)-6-dodeceno-γ-lactone. The highest concentrations were found in Riesling and Viognier wines. (Z)-6-Dodeceno-γ-lactone was found to have an aroma detection threshold of 700 ng/L in a neutral white wine. This study established that (Z)-6-dodeceno-γ-lactone is widely present in Australias most popular white wine varieties, but generally at concentrations below its aroma detection threshold.
Fems Microbiology Letters | 2004
Kate Howell; Jan H. Swiegers; Gordon M. Elsey; Tracey Siebert; Eveline J. Bartowsky; Graham H. Fleet; Isak S. Pretorius; Miguel A. de Barros Lopes