Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Ángel Ramírez is active.

Publication


Featured researches published by Miguel Ángel Ramírez.


Nature Communications | 2014

African origin of the malaria parasite Plasmodium vivax

Weimin Liu; Yingying Li; Katharina S. Shaw; Gerald H. Learn; Lindsey J. Plenderleith; Jordan A. Malenke; Sesh A. Sundararaman; Miguel Ángel Ramírez; Patricia A. Crystal; Andrew G. Smith; Frederic Bibollet-Ruche; Ahidjo Ayouba; Sabrina Locatelli; Amandine Esteban; Fatima Mouacha; Emilande Guichet; Christelle Butel; Steve Ahuka-Mundeke; Bila Isia Inogwabini; Jean Bosco N Ndjango; Sheri Speede; Crickette Sanz; David Morgan; Mary Katherine Gonder; Philip J. Kranzusch; Peter D. Walsh; Alexander V. Georgiev; Martin N. Muller; Alex K. Piel; Fiona A. Stewart

Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.


Journal of Virology | 2012

Eastern Chimpanzees, but Not Bonobos, Represent a Simian Immunodeficiency Virus Reservoir

Yingying Li; Jean-Bosco N. Ndjango; Gerald H. Learn; Miguel Ángel Ramírez; Brandon F. Keele; Frederic Bibollet-Ruche; Weimin Liu; Juliet L. Easlick; Julie M. Decker; Rebecca S. Rudicell; Bila-Isia Inogwabini; Steve Ahuka-Mundeke; Fabian H. Leendertz; Vernon Reynolds; Martin N. Muller; Rebecca L. Chancellor; Aaron S. Rundus; Nicole Simmons; Michael Worobey; George M. Shaw; Martine Peeters; Paul M. Sharp; Beatrice H. Hahn

ABSTRACT Chimpanzees in west central Africa (Pan troglodytes troglodytes) are endemically infected with simian immunodeficiency viruses (SIVcpzPtt) that have crossed the species barrier to humans and gorillas on at least five occasions, generating pandemic and nonpandemic forms of human immunodeficiency virus type 1 (HIV-1) as well as gorilla SIV (SIVgor). Chimpanzees in east Africa (Pan troglodytes schweinfurthii) are also infected with SIVcpz; however, their viruses (SIVcpzPts) have never been found in humans. To examine whether this is due to a paucity of natural infections, we used noninvasive methods to screen wild-living eastern chimpanzees in the Democratic Republic of the Congo (DRC), Uganda, and Rwanda. We also screened bonobos (Pan paniscus) in the DRC, a species not previously tested for SIV in the wild. Fecal samples (n = 3,108) were collected at 50 field sites, tested for species and subspecies origin, and screened for SIVcpz antibodies and nucleic acids. Of 2,565 samples from eastern chimpanzees, 323 were antibody positive and 92 contained viral RNA. The antibody-positive samples represented 76 individuals from 19 field sites, all sampled north of the Congo River in an area spanning 250,000 km2. In this region, SIVcpzPts was common and widespread, with seven field sites exhibiting infection rates of 30% or greater. The overall prevalence of SIVcpzPts infection was 13.4% (95% confidence interval, 10.7% to 16.5%). In contrast, none of the 543 bonobo samples from six sites was antibody positive. All newly identified SIVcpzPts strains clustered in strict accordance to their subspecies origin; however, they exhibited considerable genetic diversity, especially in protein domains known to be under strong host selection pressure. Thus, the absence of SIVcpzPts zoonoses cannot be explained by an insufficient primate reservoir. Instead, greater adaptive hurdles may have prevented the successful colonization of humans by P. t. schweinfurthii viruses.


PLOS ONE | 2016

Extracellular Vesicles from BOEC in In Vitro Embryo Development and Quality.

Ricaurte Lopera-Vasquez; Meriem Hamdi; B. Fernandez-Fuertes; Veronica Maillo; Paula Beltrán-Breña; Alexandra Calle; Alberto Redruello; Soraya López-Martín; Alfonso Gutierrez-Adan; María Yáñez-Mó; Miguel Ángel Ramírez; D. Rizos

To evaluate the effect of conditioned media (CM) and Extracellular Vesicles (EVs) derived from bovine oviduct epithelial cell (BOEC) lines on the developmental capacity of bovine zygotes and the quality of embryos produced in vitro, presumptive zygotes were cultured under specific conditions. In experiment 1, zygotes were cultured either on monolayers from BOEC extended culture (E), together with fresh BOEC suspension cells, or with BOEC-CM from fresh or E-monolayers. In experiment 2, EVs were isolated from BOEC-CM and characterized (150–200 nm) by Nanosight® and electron microscopy. Zygotes were cultured in the presence of 3x105EVs/mL, 1.5x105EVs/mL or 7.5x104EVs/mL of fresh or frozen BOEC-EVs. In experiment 3, zygotes were cultured in absence of FCS but with EVs from BOEC-E that had been cultured in different culture media. In experiment 4, zygotes were cultured in SOF+5% normal-FCS, or EV-depleted-FCS. In all cases, cleavage rate (Day 2) and blastocyst development (Day 7–9) was assessed. Blastocysts on Days 7/8 were used for quality evaluation through differential cell count, cryotolerance and gene expression patterns. No differences were found among all FCS-containing groups in cleavage rate or blastocyst yield. However, embryos derived from BOEC-CM had more trophectoderm cells, while embryos derived from BOEC-EVs, both fresh and frozen, has more trophectoderm and total cells. More embryos survived vitrification in the BOEC-CM and BOEC-EV groups. In contrast, more embryos survived in the EV-depleted-FCS than in normal-FCS group. Gene expression patterns were modified for PAG1 for embryos cultured with EVs in the presence of FCS and for IFN-T, PLAC8, PAG1, CX43, and GAPDH in the absence of FCS. In conclusion, EVs from FCS have a deleterious effect on embryo quality. BOEC-CM and EVs during in vitro culture had a positive effect on the quality of in vitro produced bovine embryos, suggesting that EVs have functional communication between the oviduct and the embryo in the early stages of development.


PLOS ONE | 2011

Prion Protein Expression Regulates Embryonic Stem Cell Pluripotency and Differentiation

Alberto Miranda; Eva Pericuesta; Miguel Ángel Ramírez; Alfonso Gutierrez-Adan

Cellular prion protein (PRNP) is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB) differentiation in mouse Prnp-null (KO) and WT embryonic stem cell (ESC) lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC) markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5) in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel) and SPRN (Shadoo), whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.


PLOS ONE | 2010

Human Endometrial CD98 Is Essential for Blastocyst Adhesion

Francisco Domínguez; Carlos Simón; Alicia Quiñonero; Miguel Ángel Ramírez; Elena González-Muñoz; Hans Burghardt; Ana Cervero; Sebastián Martínez; A. Pellicer; Manuel Palacín; Francisco Sánchez-Madrid; María Yáñez-Mó

Background Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. Methods and Principal Findings Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. Conclusions These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window.


PLOS Biology | 2015

Signature Patterns of MHC Diversity in Three Gombe Communities of Wild Chimpanzees Reflect Fitness in Reproduction and Immune Defense against SIVcpz

Emily E. Wroblewski; Paul J. Norman; Lisbeth A. Guethlein; Rebecca S. Rudicell; Miguel Ángel Ramírez; Yingying Li; Beatrice H. Hahn; Anne E. Pusey; Peter Parham

Major histocompatibility complex (MHC) class I molecules determine immune responses to viral infections. These polymorphic cell-surface glycoproteins bind peptide antigens, forming ligands for cytotoxic T and natural killer cell receptors. Under pressure from rapidly evolving viruses, hominoid MHC class I molecules also evolve rapidly, becoming diverse and species-specific. Little is known of the impact of infectious disease epidemics on MHC class I variant distributions in human populations, a context in which the chimpanzee is the superior animal model. Population dynamics of the chimpanzees inhabiting Gombe National Park, Tanzania have been studied for over 50 years. This population is infected with SIVcpz, the precursor of human HIV-1. Because HLA-B is the most polymorphic human MHC class I molecule and correlates strongly with HIV-1 progression, we determined sequences for its ortholog, Patr-B, in 125 Gombe chimpanzees. Eleven Patr-B variants were defined, as were their frequencies in Gombe’s three communities, changes in frequency with time, and effect of SIVcpz infection. The growing populations of the northern and central communities, where SIVcpz is less prevalent, have stable distributions comprising a majority of low-frequency Patr-B variants and a few high-frequency variants. Driving the latter to high frequency has been the fecundity of immigrants to the northern community, whereas in the central community, it has been the fecundity of socially dominant individuals. In the declining population of the southern community, where greater SIVcpz prevalence is associated with mortality and emigration, Patr-B variant distributions have been changing. Enriched in this community are Patr-B variants that engage with natural killer cell receptors. Elevated among SIVcpz-infected chimpanzees, the Patr-B*06:03 variant has striking structural and functional similarities to HLA-B*57, the human allotype most strongly associated with delayed HIV-1 progression. Like HLA-B*57, Patr-B*06:03 correlates with reduced viral load, as assessed by detection of SIVcpz RNA in feces.


PLOS ONE | 2013

The malagarasi river does not form an absolute barrier to chimpanzee movement in Western Tanzania.

Alex K. Piel; Fiona A. Stewart; Lilian Pintea; Yingying Li; Miguel Ángel Ramírez; Dorothy E. Loy; Patricia A. Crystal; Gerald H. Learn; Leslie A. Knapp; Paul M. Sharp; Beatrice H. Hahn

The Malagarasi River has long been thought to be a barrier to chimpanzee movements in western Tanzania. This potential geographic boundary could affect chimpanzee ranging behavior, population connectivity and pathogen transmission, and thus has implications for conservation strategies and government policy. Indeed, based on mitochondrial DNA sequence comparisons it was recently argued that chimpanzees from communities to the north and to the south of the Malagarasi are surprisingly distantly related, suggesting that the river prevents gene flow. To investigate this, we conducted a survey along the Malagarasi River. We found a ford comprised of rocks that researchers could cross on foot. On a trail leading to this ford, we collected 13 fresh fecal samples containing chimpanzee DNA, two of which tested positive for SIVcpz. We also found chimpanzee feces within the riverbed. Taken together, this evidence suggests that the Malagarasi River is not an absolute barrier to chimpanzee movements and communities from the areas to the north and south should be considered a single population. These results have important consequences for our understanding of gene flow, disease dynamics and conservation management.


Reproduction | 2017

Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro

Ricaurte Lopera-Vasquez; Meriem Hamdi; Veronica Maillo; Alfonso Gutierrez-Adan; Pablo Bermejo-Alvarez; Miguel Ángel Ramírez; María Yáñez-Mó; D. Rizos

The aim of this study was to evaluate the effect of extracellular vesicles (EV) from oviductal fluid (OF), either from the ampulla or isthmus, on the development and quality of in vitro-cultured bovine embryos. Zygotes were cultured in synthetic oviduct fluid (SOF + 3 mg/mL BSA) without calf serum (C- group), in the presence of 3 × 105 EV/mL from ampullary or isthmic OF at either 1 × 104 g (10 K) or 1 × 105 g (100 K), and compared with SOF + 5% FCS (C+ group). OF-EV size and concentration were assessed by electron microscopy and nanotracking analysis system. Embryo development was recorded on Days 7-9, and blastocyst quality was assessed through cryotolerance and gene expression analysis. Lower blastocyst yield was observed on Day 7 in the C- and OF-EV groups (12.0-14.3%) compared with C+ (20.6%); however, these differences were compensated at Days 8 and 9 (Day 9: 28.5-30.8%). Importantly, the survival rate of blastocysts produced with isthmic 100 K OF-EV was higher than that of C+ and C- group at 72 h after vitrification and warming (80.1 vs 34.5 and 50.5% respectively, P < 0.05). In terms of gene expression, blastocysts produced in the presence of 100 K isthmic OF-EV upregulated the water channel AQP3 and DNMT3A and SNRPN transcripts compared with the C+, with the expression in C- being intermediate. The lipid receptor LDLR was downregulated in C+ compared with all other groups. In conclusion, the addition of oviductal fluid extracellular vesicles from isthmus, to in vitro culture of bovine embryos in the absence of serum improves the development and quality of the embryos produced.


Biology of Reproduction | 2014

An Efficient System to Establish Biopsy-Derived Trophoblastic Cell Lines from Bovine Embryos

Priscila Ramos-Ibeas; Alexandra Calle; Eva Pericuesta; Ricardo Laguna-Barraza; Rommel Moros-Mora; Ricaurte Lopera-Vasquez; Veronica Maillo; María Yáñez-Mó; Alfonso Gutierrez-Adan; D. Rizos; Miguel Ángel Ramírez

ABSTRACT Trophoblastic cells play a crucial role in implantation and placentogenesis and can be used as a model to provide substantial information on the peri-implantation period. Unfortunately, there are few cell lines for this purpose in cattle because of the difficulty of raising successive cell stocks in the long-term. Our results show that the combination of a monolayer culture system in microdrops on a surface treated with gelatin and the employment of conditioned media from mouse embryonic fibroblasts support the growth of bovine trophoblastic cells lines from an embryo biopsy. Expression profiles of mononucleate- and binucleate-specific genes in established trophoblastic cells lines represented various stages of gestation. Moreover, the ability to expand trophoblastic cell lines for more than 2 yr together with pluripotency-related gene expression patterns revealed certain self-renewal capacity. In summary, we have developed a system to expand in vitro trophoblastic cells from an embryo biopsy that solves the limitations of using amplified DNA from a small number of cells for bovine embryo genotyping and epigenotyping and, on the other hand, facilitates the establishment of trophoblastic cell lines that can be useful as peri-implantation in vitro models.


American Journal of Primatology | 2018

Destabilization of the gut microbiome marks the end-stage of simian immunodeficiency virus infection in wild chimpanzees

Hannah J. Barbian; Yingying Li; Miguel Ángel Ramírez; Zachary Klase; Iddi Lipende; Deus Mjungu; Andrew H. Moeller; Michael L. Wilson; Anne E. Pusey; Elizabeth V. Lonsdorf; Frederic D. Bushman; Beatrice H. Hahn

Enteric dysbiosis is a characteristic feature of progressive human immunodeficiency virus type 1 (HIV‐1) infection but has not been observed in simian immunodeficiency virus (SIVmac)‐infected macaques, including in animals with end‐stage disease. This has raised questions concerning the mechanisms underlying the HIV‐1 associated enteropathy, with factors other than virus infection, such as lifestyle and antibiotic use, implicated as playing possible causal roles. Simian immunodeficiency virus of chimpanzees (SIVcpz) is also associated with increased mortality in wild‐living communities, and like HIV‐1 and SIVmac, can cause CD4+ T cell depletion and immunodeficiency in infected individuals. Given the central role of the intestinal microbiome in mammalian health, we asked whether gut microbial constituents could be identified that are indicative of SIVcpz status and/or disease progression. Here, we characterized the gut microbiome of SIVcpz‐infected and ‐uninfected chimpanzees in Gombe National Park, Tanzania. Subjecting a small number of fecal samples (N = 9) to metagenomic (shotgun) sequencing, we found bacteria of the family Prevotellaceae to be enriched in SIVcpz‐infected chimpanzees. However, 16S rRNA gene sequencing of a larger number of samples (N = 123) failed to show significant differences in both the composition and diversity (alpha and beta) of gut bacterial communities between infected (N = 24) and uninfected (N = 26) chimpanzees. Similarly, chimpanzee stool‐associated circular virus (Chi‐SCV) and chimpanzee adenovirus (ChAdV) identified by metagenomic sequencing were neither more prevalent nor more abundant in SIVcpz‐infected individuals. However, fecal samples collected from SIVcpz‐infected chimpanzees within 5 months before their AIDS‐related death exhibited significant compositional changes in their gut bacteriome. These data indicate that SIVcpz‐infected chimpanzees retain a stable gut microbiome throughout much of their natural infection course, with a significant destabilization of bacterial (but not viral) communities observed only in individuals with known immunodeficiency within the last several months before their death. Am. J. Primatol. 80:e22515, 2018.

Collaboration


Dive into the Miguel Ángel Ramírez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice H. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Yingying Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca S. Rudicell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge