Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca S. Rudicell is active.

Publication


Featured researches published by Rebecca S. Rudicell.


Nature | 2014

Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies

Nicole A. Doria-Rose; Chaim A. Schramm; Jason Gorman; Penny L. Moore; Jinal N. Bhiman; Brandon J. DeKosky; Michael J. Ernandes; Ivelin S. Georgiev; Helen J. Kim; Marie Pancera; Ryan P. Staupe; Han R. Altae-Tran; Robert T. Bailer; Ema T. Crooks; Albert Cupo; Aliaksandr Druz; Nigel Garrett; Kam Hon Hoi; Rui Kong; Mark K. Louder; Nancy S. Longo; Krisha McKee; Molati Nonyane; Sijy O’Dell; Ryan S. Roark; Rebecca S. Rudicell; Stephen D. Schmidt; Daniel J. Sheward; Cinque Soto; Constantinos Kurt Wibmer

Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01–12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30–38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.


Nature | 2009

Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz

Brandon F. Keele; James Holland Jones; Karen A. Terio; Jacob D. Estes; Rebecca S. Rudicell; Michael L. Wilson; Yingying Li; Gerald H. Learn; T. Mark Beasley; Joann Schumacher-Stankey; Emily E. Wroblewski; Anna Mosser; Jane Raphael; Shadrack Kamenya; Elizabeth V. Lonsdorf; Dominic A. Travis; Titus Mlengeya; Michael J. Kinsel; James G. Else; Guido Silvestri; Jane Goodall; Paul M. Sharp; George M. Shaw; Anne E. Pusey; Beatrice H. Hahn

African primates are naturally infected with over 40 different simian immunodeficiency viruses (SIVs), two of which have crossed the species barrier and generated human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Unlike the human viruses, however, SIVs do not generally cause acquired immunodeficiency syndrome (AIDS) in their natural hosts. Here we show that SIVcpz, the immediate precursor of HIV-1, is pathogenic in free-ranging chimpanzees. By following 94 members of two habituated chimpanzee communities in Gombe National Park, Tanzania, for over 9 years, we found a 10- to 16-fold higher age-corrected death hazard for SIVcpz-infected (n = 17) compared to uninfected (n = 77) chimpanzees. We also found that SIVcpz-infected females were less likely to give birth and had a higher infant mortality rate than uninfected females. Immunohistochemistry and in situ hybridization of post-mortem spleen and lymph node samples from three infected and two uninfected chimpanzees revealed significant CD4+ T-cell depletion in all infected individuals, with evidence of high viral replication and extensive follicular dendritic cell virus trapping in one of them. One female, who died within 3 years of acquiring SIVcpz, had histopathological findings consistent with end-stage AIDS. These results indicate that SIVcpz, like HIV-1, is associated with progressive CD4+ T-cell loss, lymphatic tissue destruction and premature death. These findings challenge the prevailing view that all natural SIV infections are non-pathogenic and suggest that SIVcpz has a substantial negative impact on the health, reproduction and lifespan of chimpanzees in the wild.


Nature | 2014

Enhanced neonatal Fc receptor function improves protection against primate SHIV infection

Sung Youl Ko; Amarendra Pegu; Rebecca S. Rudicell; Zhi Yong Yang; M. Gordon Joyce; Xuejun Chen; Saran Bao; Thomas D. Kraemer; Timo Rath; Ming Zeng; Stephen D. Schmidt; John Paul Todd; Scott R. Penzak; Kevin O. Saunders; Martha Nason; Ashley T. Haase; Srinivas S. Rao; Richard S. Blumberg; John R. Mascola; Gary J. Nabel

To protect against human immunodeficiency virus (HIV-1) infection, broadly neutralizing antibodies (bnAbs) must be active at the portals of viral entry in the gastrointestinal or cervicovaginal tracts. The localization and persistence of antibodies at these sites is influenced by the neonatal Fc receptor (FcRn), whose role in protecting against infection in vivo has not been defined. Here, we show that a bnAb with enhanced FcRn binding has increased gut mucosal tissue localization, which improves protection against lentiviral infection in non-human primates. A bnAb directed to the CD4-binding site of the HIV-1 envelope (Env) protein (denoted VRC01) was modified by site-directed mutagenesis to increase its binding affinity for FcRn. This enhanced FcRn-binding mutant bnAb, denoted VRC01-LS, displayed increased transcytosis across human FcRn-expressing cellular monolayers in vitro while retaining FcγRIIIa binding and function, including antibody-dependent cell-mediated cytotoxicity (ADCC) activity, at levels similar to VRC01 (the wild type). VRC01-LS had a threefold longer serum half-life than VRC01 in non-human primates and persisted in the rectal mucosa even when it was no longer detectable in the serum. Notably, VRC01-LS mediated protection superior to that afforded by VRC01 against intrarectal infection with simian–human immunodeficiency virus (SHIV). These findings suggest that modification of FcRn binding provides a mechanism not only to increase serum half-life but also to enhance mucosal localization that confers immune protection. Mutations that enhance FcRn function could therefore increase the potency and durability of passive immunization strategies to prevent HIV-1 infection.


Journal of Virology | 2014

Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody In Vitro Improves Protection against Lentiviral Infection In Vivo

Rebecca S. Rudicell; Young Do Kwon; Sung Youl Ko; Amarendra Pegu; Mark K. Louder; Ivelin S. Georgiev; Xueling Wu; Jiang Zhu; Jeffrey C. Boyington; Xuejun Chen; Wei Shi; Zhi Yong Yang; Nicole A. Doria-Rose; Krisha McKee; Sijy O'Dell; Stephen D. Schmidt; Gwo Yu Chuang; Aliaksandr Druz; Cinque Soto; Yongping Yang; Baoshan Zhang; Tongqing Zhou; John Paul Todd; Krissey E. Lloyd; Joshua Eudailey; Kyle E. Roberts; Bruce Randall Donald; Robert T. Bailer; Julie E. Ledgerwood; James C. Mullikin

ABSTRACT Over the past 5 years, a new generation of highly potent and broadly neutralizing HIV-1 antibodies has been identified. These antibodies can protect against lentiviral infection in nonhuman primates (NHPs), suggesting that passive antibody transfer would prevent HIV-1 transmission in humans. To increase the protective efficacy of such monoclonal antibodies, we employed next-generation sequencing, computational bioinformatics, and structure-guided design to enhance the neutralization potency and breadth of VRC01, an antibody that targets the CD4 binding site of the HIV-1 envelope. One variant, VRC07-523, was 5- to 8-fold more potent than VRC01, neutralized 96% of viruses tested, and displayed minimal autoreactivity. To compare its protective efficacy to that of VRC01 in vivo, we performed a series of simian-human immunodeficiency virus (SHIV) challenge experiments in nonhuman primates and calculated the doses of VRC07-523 and VRC01 that provide 50% protection (EC50). VRC07-523 prevented infection in NHPs at a 5-fold lower concentration than VRC01. These results suggest that increased neutralization potency in vitro correlates with improved protection against infection in vivo, documenting the improved functional efficacy of VRC07-523 and its potential clinical relevance for protecting against HIV-1 infection in humans. IMPORTANCE In the absence of an effective HIV-1 vaccine, alternative strategies are needed to block HIV-1 transmission. Direct administration of HIV-1-neutralizing antibodies may be able to prevent HIV-1 infections in humans. This approach could be especially useful in individuals at high risk for contracting HIV-1 and could be used together with antiretroviral drugs to prevent infection. To optimize the chance of success, such antibodies can be modified to improve their potency, breadth, and in vivo half-life. Here, knowledge of the structure of a potent neutralizing antibody, VRC01, that targets the CD4-binding site of the HIV-1 envelope protein was used to engineer a next-generation antibody with 5- to 8-fold increased potency in vitro. When administered to nonhuman primates, this antibody conferred protection at a 5-fold lower concentration than the original antibody. Our studies demonstrate an important correlation between in vitro assays used to evaluate the therapeutic potential of antibodies and their in vivo effectiveness.


Journal of Virology | 2009

Origin and Biology of Simian Immunodeficiency Virus in Wild-Living Western Gorillas

Jun Takehisa; Matthias H. Kraus; Ahidjo Ayouba; Elizabeth Bailes; Fran Van Heuverswyn; Julie M. Decker; Yingying Li; Rebecca S. Rudicell; Gerald H. Learn; Cecile Neel; Eitel Mpoudi Ngole; George M. Shaw; Martine Peeters; Paul M. Sharp; Beatrice H. Hahn

ABSTRACT Western lowland gorillas (Gorilla gorilla gorilla) are infected with a simian immunodeficiency virus (SIVgor) that is closely related to chimpanzee and human immunodeficiency viruses (SIVcpz and HIV-1, respectively) in west central Africa. Although existing data suggest a chimpanzee origin for SIVgor, a paucity of available sequences has precluded definitive conclusions. Here, we report the molecular characterization of one partial (BQ664) and three full-length (CP684, CP2135, and CP2139) SIVgor genomes amplified from fecal RNAs of wild-living gorillas at two field sites in Cameroon. Phylogenetic analyses showed that all SIVgor strains clustered together, forming a monophyletic lineage throughout their genomes. Interestingly, the closest relatives of SIVgor were not SIVcpzPtt strains from west central African chimpanzees (Pan troglodytes troglodytes) but human viruses belonging to HIV-1 group O. In trees derived from most genomic regions, SIVgor and HIV-1 group O formed a sister clade to the SIVcpzPtt lineage. However, in a tree derived from 5′ pol sequences (∼900 bp), SIVgor and HIV-1 group O fell within the SIVcpzPtt radiation. The latter was due to two SIVcpzPtt strains that contained mosaic pol sequences, pointing to the existence of a divergent SIVcpzPtt lineage that gave rise to SIVgor and HIV-1 group O. Gorillas appear to have acquired this lineage at least 100 to 200 years ago. To examine the biological properties of SIVgor, we synthesized a full-length provirus from fecal consensus sequences. Transfection of the resulting clone (CP2139.287) into 293T cells yielded infectious virus that replicated efficiently in both human and chimpanzee CD4+ T cells and used CCR5 as the coreceptor for viral entry. Together, these results provide strong evidence that P. t. troglodytes apes were the source of SIVgor. These same apes may also have spawned the group O epidemic; however, the possibility that gorillas served as an intermediary host cannot be excluded.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park.

Patrick H. Degnan; Anne E. Pusey; Elizabeth V. Lonsdorf; Jane Goodall; Emily E. Wroblewski; Michael L. Wilson; Rebecca S. Rudicell; Beatrice H. Hahn; Howard Ochman

The gastrointestinal tract harbors large and diverse populations of bacteria that vary among individuals and within individuals over time. Numerous internal and external factors can influence the contents of these microbial communities, including diet, geography, physiology, and the extent of contact among hosts. To investigate the contributions of such factors to the variation and changes in gut microbial communities, we analyzed the distal gut microbiota of individual chimpanzees from two communities in Gombe National Park, Tanzania. These samples, which were derived from 35 chimpanzees, many of whom have been monitored for multiple years, provide an unusually comprehensive longitudinal depth for individuals of known genetic relationships. Although the composition of the great-ape microbiota has been shown to codiversify with host species, indicating that host genetics and phylogeny have played a major role in its differentiation over evolutionary timescales, the geneaological relationships of individual chimpanzees did not coincide with the similarity in their gut microbial communities. However, the inhabitants from adjacent chimpanzee communities could be distinguished based on the contents of their gut microbiota. Despite the broad similarity of community members, as would be expected from shared diet or interactions, long-term immigrants to a community often harbored the most distinctive gut microbiota, suggesting that individuals retain hallmarks of their previous gut microbial communities for extended periods. This pattern was reinforced in several chimpanzees sampled over long temporal scales, in which the major constituents of the gut microbiota were maintained for nearly a decade.


Journal of Virology | 2010

Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas.

Cecile Neel; Lucie Etienne; Yingying Li; Jun Takehisa; Rebecca S. Rudicell; Innocent Ndong Bass; Joseph Moudindo; Aimé Mebenga; Amandine Esteban; Fran Van Heuverswyn; Florian Liegeois; Philip J. Kranzusch; Peter D. Walsh; Crickette M. Sanz; David Morgan; Jean-Bosco N. Ndjango; Jean-Christophe Plantier; Sabrina Locatelli; Mary Katherine Gonder; Fabian H. Leendertz; Christophe Boesch; Angelique Todd; Eric Delaporte; Eitel Mpoudi-Ngole; Beatrice H. Hahn; Martine Peeters

ABSTRACT Chimpanzees and gorillas are the only nonhuman primates known to harbor viruses closely related to HIV-1. Phylogenetic analyses showed that gorillas acquired the simian immunodeficiency virus SIVgor from chimpanzees, and viruses from the SIVcpz/SIVgor lineage have been transmitted to humans on at least four occasions, leading to HIV-1 groups M, N, O, and P. To determine the geographic distribution, prevalence, and species association of SIVgor, we conducted a comprehensive molecular epidemiological survey of wild gorillas in Central Africa. Gorilla fecal samples were collected in the range of western lowland gorillas (n = 2,367) and eastern Grauer gorillas (n = 183) and tested for SIVgor antibodies and nucleic acids. SIVgor antibody-positive samples were identified at 2 sites in Cameroon, with no evidence of infection at 19 other sites, including 3 in the range of the Eastern gorillas. In Cameroon, based on DNA and microsatellite analyses of a subset of samples, we estimated the prevalence of SIVgor to be 1.6% (range, 0% to 4.6%), which is significantly lower than the prevalence of SIVcpzPtt in chimpanzees (5.9%; range, 0% to 32%). All newly identified SIVgor strains formed a monophyletic lineage within the SIVcpz radiation, closely related to HIV-1 groups O and P, and clustered according to their field site of origin. At one site, there was evidence for intergroup transmission and a high intragroup prevalence. These isolated hot spots of SIVgor-infected gorilla communities could serve as a source for human infection. The overall low prevalence and sporadic distribution of SIVgor could suggest a decline of SIVgor in wild populations, but it cannot be excluded that SIVgor is still more prevalent in other parts of the geographical range of gorillas.


PLOS Pathogens | 2010

Impact of Simian Immunodeficiency Virus Infection on Chimpanzee Population Dynamics

Rebecca S. Rudicell; James Holland Jones; Emily E. Wroblewski; Gerald H. Learn; Yingying Li; Joel D. Robertson; Elizabeth Greengrass; Falk Grossmann; Shadrack Kamenya; Lilian Pintea; Deus Mjungu; Elizabeth V. Lonsdorf; Anna Mosser; Clarence L. Lehman; D. Anthony Collins; Brandon F. Keele; Jane Goodall; Beatrice H. Hahn; Anne E. Pusey; Michael L. Wilson

Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002–2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of −6.5% to −7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002–2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.


Journal of Virology | 2012

Eastern Chimpanzees, but Not Bonobos, Represent a Simian Immunodeficiency Virus Reservoir

Yingying Li; Jean-Bosco N. Ndjango; Gerald H. Learn; Miguel Ángel Ramírez; Brandon F. Keele; Frederic Bibollet-Ruche; Weimin Liu; Juliet L. Easlick; Julie M. Decker; Rebecca S. Rudicell; Bila-Isia Inogwabini; Steve Ahuka-Mundeke; Fabian H. Leendertz; Vernon Reynolds; Martin N. Muller; Rebecca L. Chancellor; Aaron S. Rundus; Nicole Simmons; Michael Worobey; George M. Shaw; Martine Peeters; Paul M. Sharp; Beatrice H. Hahn

ABSTRACT Chimpanzees in west central Africa (Pan troglodytes troglodytes) are endemically infected with simian immunodeficiency viruses (SIVcpzPtt) that have crossed the species barrier to humans and gorillas on at least five occasions, generating pandemic and nonpandemic forms of human immunodeficiency virus type 1 (HIV-1) as well as gorilla SIV (SIVgor). Chimpanzees in east Africa (Pan troglodytes schweinfurthii) are also infected with SIVcpz; however, their viruses (SIVcpzPts) have never been found in humans. To examine whether this is due to a paucity of natural infections, we used noninvasive methods to screen wild-living eastern chimpanzees in the Democratic Republic of the Congo (DRC), Uganda, and Rwanda. We also screened bonobos (Pan paniscus) in the DRC, a species not previously tested for SIV in the wild. Fecal samples (n = 3,108) were collected at 50 field sites, tested for species and subspecies origin, and screened for SIVcpz antibodies and nucleic acids. Of 2,565 samples from eastern chimpanzees, 323 were antibody positive and 92 contained viral RNA. The antibody-positive samples represented 76 individuals from 19 field sites, all sampled north of the Congo River in an area spanning 250,000 km2. In this region, SIVcpzPts was common and widespread, with seven field sites exhibiting infection rates of 30% or greater. The overall prevalence of SIVcpzPts infection was 13.4% (95% confidence interval, 10.7% to 16.5%). In contrast, none of the 543 bonobo samples from six sites was antibody positive. All newly identified SIVcpzPts strains clustered in strict accordance to their subspecies origin; however, they exhibited considerable genetic diversity, especially in protein domains known to be under strong host selection pressure. Thus, the absence of SIVcpzPts zoonoses cannot be explained by an insufficient primate reservoir. Instead, greater adaptive hurdles may have prevented the successful colonization of humans by P. t. schweinfurthii viruses.


Journal of Immunology | 2014

Antibodies VRC01 and 10E8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-Framework Regions Substantially Reverted to Germline

Ivelin S. Georgiev; Rebecca S. Rudicell; Kevin O. Saunders; Wei Shi; Tatsiana Kirys; Krisha McKee; Sijy O'Dell; Gwo Yu Chuang; Zhi Yong Yang; Gilad Ofek; Mark Connors; John R. Mascola; Gary J. Nabel; Peter D. Kwong

Abs capable of effectively neutralizing HIV-1 generally exhibit very high levels of somatic hypermutation, both in their CDR and framework-variable regions. In many cases, full reversion of the Ab-framework mutations back to germline results in substantial to complete loss of HIV-1–neutralizing activity. However, it has been unclear whether all or most of the observed framework mutations would be necessary or whether a small subset of these mutations might be sufficient for broad and potent neutralization. To address this issue and to explore the dependence of neutralization activity on the level of somatic hypermutation in the Ab framework, we applied a computationally guided framework-reversion procedure to two broadly neutralizing anti–HIV-1 Abs, VRC01 and 10E8, which target two different HIV-1 sites of vulnerability. Ab variants in which up to 78% (38 of 49 for VRC01) and 89% (31 of 35 for 10E8) of framework mutations were reverted to germline retained breadth and potency within 3-fold of the mature Abs when evaluated on a panel of 21 diverse viral strains. Further, a VRC01 variant with an ∼50% framework-reverted L chain showed a 2-fold improvement in potency over the mature Ab. Our results indicate that only a small number of Ab-framework mutations may be sufficient for high breadth and potency of HIV-1 neutralization by Abs VRC01 and 10E8. Partial framework revertants of HIV-1 broadly neutralizing Abs may present advantages over their highly mutated counterparts as Ab therapeutics and as targets for immunogen design.

Collaboration


Dive into the Rebecca S. Rudicell's collaboration.

Top Co-Authors

Avatar

Beatrice H. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily E. Wroblewski

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yingying Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ivelin S. Georgiev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald H. Learn

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge