Miguel Duran-Sindreu
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel Duran-Sindreu.
IEEE Transactions on Microwave Theory and Techniques | 2012
Jordi Naqui; Armando Fernández-Prieto; Miguel Duran-Sindreu; Francisco Mesa; J. Martel; Francisco Medina; Ferran Martin
This paper is focused on the application of complementary split-ring resonators (CSRRs) to the suppression of the common (even) mode in microstrip differential transmission lines. By periodically and symmetrically etching CSRRs in the ground plane of microstrip differential lines, the common mode can be efficiently suppressed over a wide band whereas the differential signals are not affected. Throughout the paper, we present and discuss the principle for the selective common-mode suppression, the circuit model of the structure (including the models under even- and odd-mode excitation), the strategies for bandwidth enhancement of the rejected common mode, and a methodology for common-mode filter design. On the basis of the dispersion relation for the common mode, it is shown that the maximum achievable rejection bandwidth can be estimated. Finally, theory is validated by designing and measuring a differential line and a balanced bandpass filter with common-mode suppression, where double-slit CSRRs (DS-CSRRs) are used in order to enhance the common-mode rejection bandwidth. Due to the presence of DS-CSRRs, the balanced filter exhibits more than 40 dB of common-mode rejection within a 34% bandwidth around the filter pass band.
Sensors | 2011
Jordi Naqui; Miguel Duran-Sindreu; Ferran Martin
The symmetry properties of split ring resonators (SRRs) are exploited for the implementation of novel sensing devices. The proposed structure consists of a coplanar waveguide (CPW) loaded with movable SRRs on the back substrate side. It is shown that if the SRRs are placed with the slits aligned with the symmetry plane of the CPW, the structure is transparent to signal propagation. However, if the symmetry is broken, a net axial magnetic field can be induced in the inner region of the SRRs, and signal propagation is inhibited at resonance. The proposed structures can be useful as alignment sensors, position sensors and angle sensors. This novel sensing principle is validated through experiment.
IEEE Transactions on Microwave Theory and Techniques | 2009
Miguel Duran-Sindreu; Adolfo Velez; Francisco Aznar; Gerard Siso; Jordi Bonache; Ferran Martin
This paper is focused on the application of open split ring resonators (OSRRs) and their dual counterparts, open complementary split ring resonators (OCSRRs), to the synthesis of composite right/left-handed transmission lines, that is, artificial lines exhibiting backward wave propagation at low frequencies and forward wave propagation at high frequencies. Due to the small dimensions of these resonators, the resulting lines are very compact. Several artificial lines, with different electrical characteristics and topologies, are reported as illustrative examples. It is shown that these artificial lines can be applied to the synthesis of dual-band components and bandpass filters, and two prototype device examples are designed and fabricated in coplanar waveguide technology: a dual-band impedance inverter applied to a dual-band power divider, and an order-3 wide-band bandpass filter. Finally, it is also demonstrated that OSRRs and OCSRRs can be combined for the synthesis of band pass filters in microstrip technology. Since OSRRs and OCSRRs are described by means of series and shunt resonant tanks, respectively, and they are electrically small, their potential to the design of semi lumped planar microwave devices is very high.
Sensors | 2012
Jordi Naqui; Miguel Duran-Sindreu; Ferran Martin
In this paper compact alignment and position sensors based on coplanar waveguide (CPW) transmission lines loaded with split ring resonators (SRRs) are proposed. The structure consists of a folded CPW loaded with two SRRs tuned at different frequencies to detect both the lack of alignment and the two-dimensional linear displacement magnitude. Two additional resonators (also tuned at different frequencies) are used to detect the displacement direction. The working principle for this type of sensor is explained in detail, and a prototype device to illustrate the potential of the approach has been designed and fabricated.
IEEE Transactions on Microwave Theory and Techniques | 2010
Miguel Duran-Sindreu; Gerard Siso; Jordi Bonache; Ferran Martin
This paper is focused on the design of generalized composite right/left handed (CRLH) transmission lines in a fully planar configuration, that is, without the use of surface-mount components. These artificial lines exhibit multiple, alternating backward and forward-transmission bands, and are therefore useful for the synthesis of multi-band microwave components. Specifically, a quad-band power splitter, a quad-band branch line hybrid coupler and a dual-bandpass filter, all of them based on fourth-order CRLH lines (i.e., lines exhibiting 2 left-handed and 2 right-handed bands alternating), are presented in this paper. The accurate circuit models, including parasitics, of the structures under consideration (based on electrically small planar resonators), as well as the detailed procedure for the synthesis of these lines using such circuit models, are given. It will be shown that satisfactory results in terms of performance and size can be obtained through the proposed approach, fully compatible with planar technology.
IEEE Antennas and Wireless Propagation Letters | 2013
Jordi Naqui; Miguel Duran-Sindreu; Ferran Martin
The purpose of this letter is to understand and model the electromagnetic properties of transmission lines loaded with split-ring resonators (SRRs) and complementary split-ring resonators (CSRRs) arbitrarily oriented. It is shown that if the slits of these resonators are aligned in a nonorthogonal direction to the line axis, cross-polarization effects arise. Namely, the particles (SRRs or CSRRs) are excited through both magnetic and electric coupling. It is pointed out that the previously reported lumped element equivalent circuit models of SRR- and CSRR-loaded lines (where cross polarization is not considered) are valid as long as the slits are orthogonally oriented to the line axis, and new models that include cross polarization are presented and discussed. The validity and accuracy of the models is demonstrated through parameter extraction and comparison to full-wave electromagnetic simulations and measurements.
IEEE Microwave and Wireless Components Letters | 2011
David Bouyge; David Mardivirin; Jordi Bonache; Aurelian Crunteanu; Arnaud Pothier; Miguel Duran-Sindreu; Pierre Blondy; Ferran Martin
A new principle for the implementation of tunable split ring resonators (SRRs) is presented. The rings forming the SRRs are partly fixed to the substrate (anchor) and partly suspended (up-curved cantilever). Through electrostatic actuation, the suspended parts are deflected down, the distributed capacitance between the pair of coupled rings is modified, and hence the resonance frequency of the SRR can be electrically tuned. To obtain electrically movable rings, a cantilever-type micro-electro-mechanical-system (MEMS) design and fabrication process is applied. The resonance frequencies at the different switching states are measured by coupling the tunable SRR to a host microstrip line, and reveal that significant tuning ranges can be achieved. This novel tuning concept is applied to the implementation of tunable stopband filters at Ku band as proof-of-concept demonstrators.
IEEE Microwave and Wireless Components Letters | 2013
Paris Vélez; Jordi Naqui; Armando Fernández-Prieto; Miguel Duran-Sindreu; Jordi Bonache; J. Martel; Francisco Medina; F. Martin
Differential (balanced) microstrip bandpass filters (BPFs) implemented by combining open split ring resonators (OSRRs) and open complementary split ring resonators (OCSRRs) are proposed. The OSRRs are series connected in both strips of the differential line, whereas the OCSRRs are paired face-to-face and connected between both line strips in a symmetric configuration. For the differential mode, the OCSRRs are virtually connected to ground and the structure can be modeled, to a first-order approximation, by a cascade of series resonators (OSRRs) alternating with shunt resonators (OCSRRs), i.e., the canonical circuit model of a BPF. These filters have the ability to suppress the common mode by properly adjusting the metallic area surrounding the OCSRRs. An order-3 balanced Chebyshev BPF is designed and fabricated to illustrate the possibilities of the approach. The filter does not require vias (contrary to previous single-ended microstrip BPFs based on OSRRs and OCSRRs), filter dimensions are small, and the common mode is efficiently suppressed with more than 20 dB rejection within the differential filter pass band.
Proceedings of the IEEE | 2011
Miguel Duran-Sindreu; Adolfo Velez; Gerard Siso; Paris Vélez; Jordi Selga; Jordi Bonache; Ferran Martin
This paper is focused on metamaterial transmission lines based on split rings. Specifically, the considered lines are those based on the hybrid approach, where complementary split ring resonators (CSRRs) are combined with series gaps and shunt inductive stubs, and those implemented by loading a host line with open split ring resonators (OSRRs) and open complementary split ring resonators (OCSRRs). The dispersion characteristics and the characteristic impedance of such lines, essential for design purposes, are analyzed to the light of the lumped element equivalent circuit models of the lines. Finally, it is shown that hybrid lines are useful for the design of power splitters with filtering capability, and OSRR/OCSRR-loaded lines are of interest for the design of wideband bandpass filters. The achieved performances are satisfactory and device dimensions small.
international microwave symposium | 2012
Jordi Naqui; Miguel Duran-Sindreu; Ferran Martin
This paper is focused on the analysis of coplanar waveguides (CPW) loaded with symmetric resonators (such as split ring resonators and stepped impedance resonators) whose symmetry plane behaves as an electric wall at the fundamental resonance frequency. If these resonators are symmetrically etched in the back substrate side of the CPW, the resonators are not excited, and signal propagation along the CPW is allowed. Conversely, if the symmetry is truncated, the magnetic wall of the CPW (fundamental mode) is not aligned with the electric wall of the resonator, and signal propagation is inhibited in the vicinity of the first resonance frequency. These structures can be of interest for the design of novel sensors or radiofrequency (RF) bar codes, based on the deviation from symmetry. The principle of operation of such structures is illustrated and experimentally validated by proof-of-concept devices.