Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miguel Larguinho is active.

Publication


Featured researches published by Miguel Larguinho.


Journal of Proteomics | 2012

Gold and silver nanoparticles for clinical diagnostics - From genomics to proteomics.

Miguel Larguinho; Pedro V. Baptista

Nanotechnology has prompted researchers to develop new and improved materials aimed at biomedical applications with particular emphasis in diagnostics and therapy. Special interest has been directed at providing enhanced biomolecular diagnostics, including SNP detection gene expression profiles and biomarker characterisation. These strategies have focused on the development of nanoscale devices and platforms that can be used for single molecule characterisation of nucleic acid, DNA or RNA, and protein at an increased rate when compared to traditional techniques. Also, several advances have been reported on DNA analysis in real time, at both high resolution and very high throughputs, suitable for biomedical diagnostics. Here, we shall provide a review of available nanotechnology-based platforms for biomolecular recognition, and their application to molecular diagnostics and genome analysis, with emphasis on the use of noble metal nanoparticles for simple and specific analysis systems. Particular focus will be put on those already being translated into clinical settings. This article is part of a Special Issue entitled: Proteomics: The clinical link.


Nanotoxicology | 2014

Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis.

João Conde; Miguel Larguinho; Ana Cordeiro; Luís R. Raposo; Pedro M. Costa; Susana Santos; Mário S. Diniz; Alexandra R. Fernandes; Pedro V. Baptista

Abstract Antisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3′-Cy3 and 5′-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.


Nanotechnology | 2010

Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection.

Gonçalo Doria; Miguel Larguinho; J T Dias; Eulália Pereira; Ricardo Franco; Pedro V. Baptista

A specific colorimetric DNA detection method based on oligonucleotide functionalized gold-silver-alloy nanoparticles (AuAg-alloy-nanoprobes) is presented. The AuAg-alloy-nanoprobes were then used for the specific detection of a DNA sequence from TP53-a gene involved in cancer development. The AuAg-alloy-nanoprobes were then used in combination with Au-nanoprobes for a one-pot dual-colour detection strategy that allowed for the simultaneous differential detection of two distinct target sequences. This system poses an unprecedented opportunity to explore the combined use of metal nanoparticles with different composition towards the development of a multiplex one-pot colorimetric assay for DNA detection.


Talanta | 2010

Development of a fast and efficient ultrasonic-based strategy for DNA fragmentation

Miguel Larguinho; Hugo M. Santos; Gonçalo Doria; H. Scholz; Pedro V. Baptista; José Luis Capelo

Several ultrasound-based platforms for DNA sample preparation were evaluated in terms of effective fragmentation of DNA (plasmid and genomic DNA)-ultrasonic probe, sonoreactor, ultrasonic bath and the newest Vialtweeter device. The sonoreactor showed the best efficiency of DNA fragmentation while simultaneously assuring no cross-contamination of samples, and was considered the best ultrasonic tool to achieve effective fragmentation of DNA at high-throughput and avoid sample overheating. Several operation variables were studied-ultrasonication time and amplitude, DNA concentration, sample volume and sample pre-treatment-that allowed optimisation of a sonoreactor-based strategy for effective DNA fragmentation. Optimal operating conditions to achieve DNA fragmentation were set to 100% ultrasonic amplitude, 100microL sample volume, 8min ultrasonic treatment (2min/sample) for a DNA concentration of 100microgmL(-1). The proposed ultrasonication strategy can be easily implemented in any laboratory setup, providing fast, simple and reliable means for effective DNA sample preparation when fragmentation is critical for downstream molecular detection and diagnostics protocols.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2015

Physiological, cellular and biochemical thermal stress response of intertidal shrimps with different vertical distributions: Palaemon elegans and Palaemon serratus

Diana Madeira; Vanessa Mendonça; Marta Dias; Joana Roma; Pedro M. Costa; Miguel Larguinho; Catarina Vinagre; Mário S. Diniz

The ability to cope with high temperature variations is a critical factor in intertidal communities. Two species of intertidal rocky shore shrimps (Palaemon sp.) with different vertical distributions were collected from the Portuguese coast in order to test if they were differentially sensitive to thermal stress. Three distinct levels of biological organization (organismal, biochemical, and cellular) were surveyed. The shrimp were exposed to a constant rate of temperature increase of 1°C x h(-1), starting at 20°C until reaching the CTMax (critical thermal maximum). During heat stress, two biomarkers of protein damage were quantified in the muscle via enzyme-linked immunosorbent assays: heat shock proteins HSP70 (hsp70/hsc70) and total ubiquitin. Muscle histopathological alterations caused by temperature were also evaluated. CTMax values were not significantly different between the congeners (P. elegans 33.4 ± 0.5 °C; P. serratus 33.0 ± 0.5 °C). Biomarker levels did not increase along the temperature trial, but P. elegans (higher intertidal) showed higher amounts of HSP70 and total ubiquitin than P. serratus (lower intertidal). HSP70 and total ubiquitin levels showed a positive significant correlation in both species, suggesting that their association is important in thermal tolerance. Histopathological observations of muscle tissue in P. serratus showed no gross alterations due to temperature but did show localized atrophy of muscle fibers at CTMax. In P. elegans, alterations occurred at a larger scale, showing multiple foci of atrophic muscular fascicles caused by necrotic or autolytic processes. In conclusion, Palaemon congeners displayed different responses to stress at a cellular level, with P. elegans having greater biomarker levels and histopathological alterations.


Journal of Biological Inorganic Chemistry | 2015

Characterization of antiproliferative potential and biological targets of a copper compound containing 4′-phenyl terpyridine

Ana Soraia Mendo; Sara Figueiredo; Catarina Roma-Rodrigues; Paula A. Videira; Zhen Ma; Mário S. Diniz; Miguel Larguinho; Pedro M. Costa; João C. Lima; Armando J. L. Pombeiro; Pedro V. Baptista; Alexandra R. Fernandes

Several copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)2}L](NO3)2 incorporating the ligand 4′-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.


Environmental Research | 2014

Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

Miguel Larguinho; Ana Cordeiro; Mário S. Diniz; Pedro M. Costa; Pedro V. Baptista

Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated.


Expert Review of Molecular Diagnostics | 2015

Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics

Miguel Larguinho; Rafaela Canto; Milton Cordeiro; Pedro Pedrosa; Andreia Fortuna; Raquel Vinhas; Pedro V. Baptista

Non-crosslinking (NCL) approaches using DNA-modified gold nanoparticles for molecular detection constitute powerful tools with potential implications in clinical diagnostics and tailored medicine. From detection of pathogenic agents to identification of specific point mutations associated with health conditions, these methods have shown remarkable versatility and simplicity. Herein, the NCL hybridization assay is broken down to the fundamentals behind its assembly and detection principle. Gold nanoparticle synthesis and derivatization is addressed, emphasizing optimal size homogeneity and conditions for maximum surface coverage, with direct implications in downstream detection. The detection principle is discussed and the advantages and drawbacks of different NCL approaches are discussed. Finally, NCL-based applications for molecular detection of clinically relevant loci and potential integration into more complex biosensing platforms, projecting miniaturization and portability are addressed.


Journal of Applied Toxicology | 2014

Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations.

Miguel Larguinho; Pedro M. Costa; Gonçalo Sousa; Maria Helena Costa; Mário S. Diniz; Pedro V. Baptista

Acrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose‐dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S‐transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substances pro‐mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organisms metabolic defences against a chemical agent rather than causing a general systemic failure. Copyright


Talanta | 2013

Fast nucleotide identification through fingerprinting using gold nanoparticle-based surface-assisted laser desorption/ionisation

Miguel Larguinho; José Luis Capelo; Pedro V. Baptista

We report a method centred on gold nanoparticle-based surface-assisted laser desorption/ionisation for analysis of deoxynucleotides and alkylated nucleobases. Gold nanoparticles allow for enhanced analysis capability by eliminating undesired signature peaks; thus more elegant mass spectra can be attained that allow identification by nucleotide mass fingerprint. The resulting fingerprinting patterns on the spectra are compared and associated with the presence of different nucleotides in the sample. This method can be easily extended to modified nucleotides implicated in genome lesions due to exposure to environment chemicals, such as DNA adducts (e.g. guanine adducts). The use of gold nanoparticles for surface-assisted laser desorption/ionisation can be an useful tool to resolve common issues of background noise when analysing nucleic acids samples.

Collaboration


Dive into the Miguel Larguinho's collaboration.

Top Co-Authors

Avatar

Pedro V. Baptista

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Mário S. Diniz

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Cordeiro

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

José Luis Capelo

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Sara Figueiredo

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Milton Cordeiro

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Pedro Pedrosa

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Ana Soraia Mendo

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge