Miguel Vicente-Manzanares
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel Vicente-Manzanares.
Nature Reviews Molecular Cell Biology | 2009
Miguel Vicente-Manzanares; Xuefei Ma; Robert S. Adelstein; Alan Rick Horwitz
Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian NM II isoforms have both overlapping and unique properties. Owing to its position downstream of convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and tissue architecture. Recent insight into the role of NM II in these processes has been gained from loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion dynamics and the discovery of NM II mutations that cause monogenic diseases.
Nature Cell Biology | 2008
Colin K. Choi; Miguel Vicente-Manzanares; Jessica Zareno; Leanna Whitmore; Alex Mogilner; Alan Rick Horwitz
Using two-colour imaging and high resolution TIRF microscopy, we investigated the assembly and maturation of nascent adhesions in migrating cells. We show that nascent adhesions assemble and are stable within the lamellipodium. The assembly is independent of myosin II but its rate is proportional to the protrusion rate and requires actin polymerization. At the lamellipodium back, the nascent adhesions either disassemble or mature through growth and elongation. Maturation occurs along an α-actinin–actin template that elongates centripetally from nascent adhesions. α-Actinin mediates the formation of the template and organization of adhesions associated with actin filaments, suggesting that actin crosslinking has a major role in this process. Adhesion maturation also requires myosin II. Rescue of a myosin IIA knockdown with an actin-bound but motor-inhibited mutant of myosin IIA shows that the actin crosslinking function of myosin II mediates initial adhesion maturation. From these studies, we have developed a model for adhesion assembly that clarifies the relative contributions of myosin II and actin polymerization and organization.
Journal of Cell Biology | 2002
Olga Barreiro; María Yáñez-Mó; Juan M. Serrador; María C. Montoya; Miguel Vicente-Manzanares; Reyes Tejedor; Heinz Furthmayr; Francisco Sánchez-Madrid
Ezrin, radixin, and moesin (ERM) regulate cortical morphogenesis and cell adhesion by connecting membrane adhesion receptors to the actin-based cytoskeleton. We have studied the interaction of moesin and ezrin with the vascular cell adhesion molecule (VCAM)-1 during leukocyte adhesion and transendothelial migration (TEM). VCAM-1 interacted directly with moesin and ezrin in vitro, and all of these molecules colocalized at the apical surface of endothelium. Dynamic assessment of this interaction in living cells showed that both VCAM-1 and moesin were involved in lymphoblast adhesion and spreading on the endothelium, whereas only moesin participated in TEM, following the same distribution pattern as ICAM-1. During leukocyte adhesion in static or under flow conditions, VCAM-1, ICAM-1, and activated moesin and ezrin clustered in an endothelial actin-rich docking structure that anchored and partially embraced the leukocyte containing other cytoskeletal components such as α-actinin, vinculin, and VASP. Phosphoinositides and the Rho/p160 ROCK pathway, which participate in the activation of ERM proteins, were involved in the generation and maintenance of the anchoring structure. These results provide the first characterization of an endothelial docking structure that plays a key role in the firm adhesion of leukocytes to the endothelium during inflammation.
Journal of Cell Science | 2009
Miguel Vicente-Manzanares; Colin K. Choi; Alan Rick Horwitz
The connection between integrins and actin is driving the field of cell migration in new directions. Integrins and actin are coupled through a physical linkage, which provides traction for migration. Recent studies show the importance of this linkage in regulating adhesion organization and development. Actin polymerization orchestrates adhesion assembly near the leading edge of a migrating cell, and the dynamic cross-linking of actin filaments promotes adhesion maturation. Breaking the linkage between actin and integrins leads to adhesion disassembly. Recent quantitative studies have revealed points of slippage in the linkage between actin and integrins, showing that it is not always efficient. Regulation of the assembly and organization of adhesions and their linkage to actin relies on signaling pathways that converge on components that control actin polymerization and organization.
Journal of Cell Biology | 2007
Miguel Vicente-Manzanares; Jessica Zareno; Leanna Whitmore; Colin K. Choi; Alan F. Horwitz
We have used isoform-specific RNA interference knockdowns to investigate the roles of myosin IIA (MIIA) and MIIB in the component processes that drive cell migration. Both isoforms reside outside of protrusions and act at a distance to regulate cell protrusion, signaling, and maturation of nascent adhesions. MIIA also controls the dynamics and size of adhesions in central regions of the cell and contributes to retraction and adhesion disassembly at the rear. In contrast, MIIB establishes front–back polarity and centrosome, Golgi, and nuclear orientation. Using ATPase- and contraction-deficient mutants of both MIIA and MIIB, we show a role for MIIB-dependent actin cross-linking in establishing front–back polarity. From these studies, MII emerges as a master regulator and integrator of cell migration. It mediates each of the major component processes that drive migration, e.g., polarization, protrusion, adhesion assembly and turnover, polarity, signaling, and tail retraction, and it integrates spatially separated processes.
Journal of Cell Science | 2005
Miguel Vicente-Manzanares; Donna J. Webb; A. Rick Horwitz
Cell migration is a fundamental process, from simple, uni-cellular organisms such as amoeba, to complex multi-cellular organisms such as mammals. Whereas its main functions comprise mating and the search for food in simple organisms ([Manahan et al., 2004][1]), complexity brings a requirement for
Nature Reviews Immunology | 2004
Miguel Vicente-Manzanares; Francisco Sánchez-Madrid
The cytoskeleton is a cellular network of structural, adaptor and signalling molecules that regulates most cellular functions that are related to the immune response, including migration, extravasation, antigen recognition, activation and phagocytosis by different subsets of leukocytes. Recently, a large number of regulatory elements and structural constituents of the leukocyte cytoskeleton have been identified. In this review, we discuss the composition and regulation of the different cytoskeletal elements and their role in immune responses.
European Journal of Immunology | 1999
Miguel Angel; del Pozo; Miguel Vicente-Manzanares; Reyes Tejedor; Juan M. Serrador; Francisco Sánchez-Madrid
Motile lymphocytes adopt a polarized morphology with different adhesion molecules (ICAM, CD43 and CD44) and ERM actin‐binding proteins concentrated on the uropod, a slender posterior appendage with important functions in cell‐cell interactions and lymphocyte recruitment. We have studied the role of Rho family of GTPases (Rho, Rac and Cdc42) in the control of lymphocyte polarity and migration by analyzing the effects of exogenously introduced Rho GTPase mutants. Transfection of T cell lines that constitutively display a polarized motile morphology with activated mutants of RhoA, Rac1 and Cdc42 impaired cell polarization. A guanosine nucleotide exchange factor for Rac, Tiam‐1, induced the same effect as activated Rac1. Conversely, dominant negative forms of the three GTP‐binding proteins induced a polarized phenotype in constitutively round‐shaped T cells with redistribution of ICAM‐3 and moesin to the uropod in an integrin‐dependent manner. On the other hand, overexpression of dominant negative Cdc42 and activated mutants of all three Rho GTPases significantly inhibited SDF‐1α‐induced T cell chemotaxis. Together, these data demonstrate that Rho GTPases regulate lymphocyte polarization and chemokine‐induced migration, and underscore the key role of Cdc42 in lymphocyte directional migration.
Journal of Cell Biology | 2006
Anjana Nayal; Donna J. Webb; Claire M. Brown; Erik Schaefer; Miguel Vicente-Manzanares; Alan Rick Horwitz
Continuous adhesion formation and disassembly (adhesion turnover) in the protrusions of migrating cells is regulated by unclear mechanisms. We show that p21-activated kinase (PAK)–induced phosphorylation of serine 273 in paxillin is a critical regulator of this turnover. Paxillin-S273 phosphorylation dramatically increases migration, protrusion, and adhesion turnover by increasing paxillin–GIT1 binding and promoting the localization of a GIT1–PIX–PAK signaling module near the leading edge. Mutants that interfere with the formation of this ternary module abrogate the effects of paxillin-S273 phosphorylation. PAK-dependent paxillin-S273 phosphorylation functions in a positive-feedback loop, as active PAK, active Rac, and myosin II activity are all downstream effectors of this turnover pathway. Finally, our studies led us to identify in highly motile cells a class of small adhesions that reside near the leading edge, turnover in 20–30 s, and resemble those seen with paxillin-S273 phosphorylation. These adhesions appear to be regulated by the GIT1–PIX–PAK module near the leading edge.
Journal of Cell Biology | 2008
Miguel Vicente-Manzanares; Margaret A. Koach; Leanna Whitmore; Marcelo Lazzaron Lamers; Alan F. Horwitz
We have found that MLC-dependent activation of myosin IIB in migrating cells is required to form an extended rear, which coincides with increased directional migration. Activated myosin IIB localizes prominently at the cell rear and produces large, stable actin filament bundles and adhesions, which locally inhibit protrusion and define the morphology of the tail. Myosin IIA forms de novo filaments away from the myosin IIB–enriched center and back to form regions that support protrusion. The positioning and dynamics of myosin IIA and IIB depend on the self-assembly regions in their coiled-coil C terminus. COS7 and B16 melanoma cells lack myosin IIA and IIB, respectively; and show isoform-specific front-back polarity in migrating cells. These studies demonstrate the role of MLC activation and myosin isoforms in creating a cell rear, the segregation of isoforms during filament assembly and their differential effects on adhesion and protrusion, and a key role for the noncontractile region of the isoforms in determining their localization and function.