Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mihaela Campan is active.

Publication


Featured researches published by Mihaela Campan.


Nature Genetics | 2007

Epigenetic stem cell signature in cancer

Martin Widschwendter; Heidi Fiegl; Daniel Egle; Elisabeth Mueller-Holzner; Gilbert Spizzo; Christian Marth; Daniel J. Weisenberger; Mihaela Campan; Joanne Young; Ian Jacobs; Peter W. Laird

Embryonic stem cells rely on Polycomb group proteins to reversibly repress genes required for differentiation. We report that stem cell Polycomb group targets are up to 12-fold more likely to have cancer-specific promoter DNA hypermethylation than non-targets, supporting a stem cell origin of cancer in which reversible gene repression is replaced by permanent silencing, locking the cell into a perpetual state of self-renewal and thereby predisposing to subsequent malignant transformation.


Nucleic Acids Research | 2005

Analysis of repetitive element DNA methylation by MethyLight

Daniel J. Weisenberger; Mihaela Campan; Tiffany I. Long; Myungjin Kim; Christian Woods; Emerich Fiala; Melanie Ehrlich; Peter W. Laird

Repetitive elements represent a large portion of the human genome and contain much of the CpG methylation found in normal human postnatal somatic tissues. Loss of DNA methylation in these sequences might account for most of the global hypomethylation that characterizes a large percentage of human cancers that have been studied. There is widespread interest in correlating the genomic 5-methylcytosine content with clinical outcome, dietary history, lifestyle, etc. However, a high-throughput, accurate and easily accessible technique that can be applied even to paraffin-embedded tissue DNA is not yet available. Here, we report the development of quantitative MethyLight assays to determine the levels of methylated and unmethylated repeats, namely, Alu and LINE-1 sequences and the centromeric satellite alpha (Satα) and juxtacentromeric satellite 2 (Sat2) DNA sequences. Methylation levels of Alu, Sat2 and LINE-1 repeats were significantly associated with global DNA methylation, as measured by high performance liquid chromatography, and the combined measurements of Alu and Sat2 methylation were highly correlative with global DNA methylation measurements. These MethyLight assays rely only on real-time PCR and provide surrogate markers for global DNA methylation analysis. We also describe a novel design strategy for the development of methylation-independent MethyLight control reactions based on Alu sequences depleted of CpG dinucleotides by evolutionary deamination on one strand. We show that one such Alu-based reaction provides a greatly improved detection of DNA for normalization in MethyLight applications and is less susceptible to normalization errors caused by cancer-associated aneuploidy and copy number changes.


Genome Research | 2010

Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer

Andrew E. Teschendorff; Usha Menon; Aleksandra Gentry-Maharaj; Susan J. Ramus; Daniel J. Weisenberger; Hui Shen; Mihaela Campan; Houtan Noushmehr; Christopher G. Bell; A. Peter Maxwell; David A. Savage; Elisabeth Mueller-Holzner; Christian Marth; Gabrijela Kocjan; Simon A. Gayther; Allison Jones; Stephan Beck; Wolfgang Wagner; Peter W. Laird; Ian Jacobs; Martin Widschwendter

Polycomb group proteins (PCGs) are involved in repression of genes that are required for stem cell differentiation. Recently, it was shown that promoters of PCG target genes (PCGTs) are 12-fold more likely to be methylated in cancer than non-PCGTs. Age is the most important demographic risk factor for cancer, and we hypothesized that its carcinogenic potential may be referred by irreversibly stabilizing stem cell features. To test this, we analyzed the methylation status of over 27,000 CpGs mapping to promoters of approximately 14,000 genes in whole blood samples from 261 postmenopausal women. We demonstrate that stem cell PCGTs are far more likely to become methylated with age than non-targets (odds ratio = 5.3 [3.8-7.4], P < 10(-10)), independently of sex, tissue type, disease state, and methylation platform. We identified a specific subset of 69 PCGT CpGs that undergo hypermethylation with age and validated this methylation signature in seven independent data sets encompassing over 900 samples, including normal and cancer solid tissues and a population of bone marrow mesenchymal stem/stromal cells (P < 10(-5)). We find that the age-PCGT methylation signature is present in preneoplastic conditions and may drive gene expression changes associated with carcinogenesis. These findings shed substantial novel insights into the epigenetic effects of aging and support the view that age may predispose to malignant transformation by irreversibly stabilizing stem cell features.


Gut | 2006

CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies.

Shuji Ogino; Mami Cantor; Takako Kawasaki; Mohan Brahmandam; Gregory J. Kirkner; Daniel J. Weisenberger; Mihaela Campan; Peter W. Laird; Massimo Loda; Charles S. Fuchs

Background: The concept of CpG island methylator phenotype (CIMP) is not universally accepted. Even if specific clinicopathological features have been associated with CIMP, investigators often failed to demonstrate a bimodal distribution of the number of methylated markers, which would suggest CIMP as a distinct subtype of colorectal cancer. Previous studies primarily used methylation specific polymerase chain reaction which might detect biologically insignificant low levels of methylation. Aim: To demonstrate a distinct genetic profile of CIMP colorectal cancer using quantitative DNA methylation analysis that can distinguish high from low levels of DNA methylation. Materials and methods: We developed quantitative real time polymerase chain reaction (MethyLight) assays and measured DNA methylation (percentage of methylated reference) of five carefully selected loci (promoters of CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 460 colorectal cancers from large prospective cohorts. Results: There was a clear bimodal distribution of 80 microsatellite instability-high (MSI-H) tumours according to the number of methylated promoters, with no tumours showing 3/5 methylated loci. Thus we defined CIMP as having ⩾4/5 methylated loci, and 17% (78) of the 460 tumours were classified as CIMP. CIMP was significantly associated with female sex, MSI, BRAF mutations, and wild-type KRAS. Both CIMP MSI-H tumours and CIMP microsatellite stable (MSS) tumours showed much higher frequencies of BRAF mutations (63% and 54%) than non-CIMP counterparts (non-CIMP MSI-H (0%, p<10−5) and non-CIMP MSS tumours (6.6%, p<10−4), respectively). Conclusion: CIMP is best characterised by quantitative DNA methylation analysis. CIMP is a distinct epigenotype of colorectal cancer and may be less frequent than previously reported.


Genome Research | 2012

Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression.

Suhaida A. Selamat; Brian Chung; Luc Girard; Wei Zhang; Ying Zhang; Mihaela Campan; Kimberly D. Siegmund; Michael Koss; Jeffrey A. Hagen; Wan L. Lam; Stephen Lam; Adi F. Gazdar; Ite A. Laird-Offringa

Lung cancer is the leading cause of cancer death worldwide, and adenocarcinoma is its most common histological subtype. Clinical and molecular evidence indicates that lung adenocarcinoma is a heterogeneous disease, which has important implications for treatment. Here we performed genome-scale DNA methylation profiling using the Illumina Infinium HumanMethylation27 platform on 59 matched lung adenocarcinoma/non-tumor lung pairs, with genome-scale verification on an independent set of tissues. We identified 766 genes showing altered DNA methylation between tumors and non-tumor lung. By integrating DNA methylation and mRNA expression data, we identified 164 hypermethylated genes showing concurrent down-regulation, and 57 hypomethylated genes showing increased expression. Integrated pathways analysis indicates that these genes are involved in cell differentiation, epithelial to mesenchymal transition, RAS and WNT signaling pathways, and cell cycle regulation, among others. Comparison of DNA methylation profiles between lung adenocarcinomas of current and never-smokers showed modest differences, identifying only LGALS4 as significantly hypermethylated and down-regulated in smokers. LGALS4, encoding a galactoside-binding protein involved in cell-cell and cell-matrix interactions, was recently shown to be a tumor suppressor in colorectal cancer. Unsupervised analysis of the DNA methylation data identified two tumor subgroups, one of which showed increased DNA methylation and was significantly associated with KRAS mutation and to a lesser extent, with smoking. Our analysis lays the groundwork for further molecular studies of lung adenocarcinoma by identifying novel epigenetically deregulated genes potentially involved in lung adenocarcinoma development/progression, and by describing an epigenetic subgroup of lung adenocarcinoma associated with characteristic molecular alterations.


Laboratory Investigation | 2008

DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis

Gyeong Hoon Kang; Sun Lee; Nam-Yun Cho; Tasha Gandamihardja; Tiffany I. Long; Daniel J. Weisenberger; Mihaela Campan; Peter W. Laird

Transcriptional silencing by CpG island hypermethylation is a potential mechanism for the inactivation of tumor-related genes. Virtually, all types of human cancers show CpG island hypermethylation, and gastric carcinoma (GC) is one of the tumors with a high frequency of aberrant CpG island hypermethylation. In this study, we prescreened DNA methylation of 170 CpG island loci in a training set of 8 paired GC and GC-associated non-neoplastic mucosae (GCN) using MethyLight technology and selected 27 DNA methylation markers showing higher methylation frequency or level in GC than in GCN. These markers were then analyzed in a tester set of 25 paired GC and GCN and 27 chronic gastritis (CG) from non-cancer patients to generate their DNA methylation profiles. We identified 17 novel methylation markers in GC, including SFRP4, SEZ6L, TWIST1, BCL2, KL, TERT, SCGB3A1, IGF2, GRIN2B, SFRP5, DLEC1, HOXA1, CYP1B1, SMAD9, MT1G, NR3C1, and HOXA10. Of the 27 selected CpG island loci, 23 were methylated in GC, GCN, and CG and the remainder four loci (DLEC1, CHFR, CYP1B1, and NR3C1) were only methylated in GC. We found that the number of methylated loci was significantly higher in GC than in GCN or CG and that Helicobacter pylori infection was strongly associated with aberrant CpG island hypermethylation in CG. Hypermethylation was more prevalent in Epstein–Barr virus (EBV)-positive GC than in EBV-negative GC and in diffuse-type GC than in intestinal-type GC. Through our large-scale screening of 170 CpG island loci, we found 17 new DNA methylation markers of GC, which may serve as useful markers that may identify a distinct subset of GC.


Nucleic Acids Research | 2008

DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight

Peter W. Laird; Binh N. Trinh; Mihaela Campan; Daniel J. Weisenberger

Alterations in cytosine-5 DNA methylation are frequently observed in most types of human cancer. Although assays utilizing PCR amplification of bisulfite-converted DNA are widely employed to analyze these DNA methylation alterations, they are generally limited in throughput capacity, detection sensitivity, and or resolution. Digital PCR, in which a DNA sample is analyzed in distributive fashion over multiple reaction chambers, allows for enumeration of discrete template DNA molecules, as well as sequestration of non-specific primer annealing templates into negative chambers, thereby increasing the signal-to-noise ratio in positive chambers. Here, we have applied digital PCR technology to bisulfite-converted DNA for single-molecule high-resolution DNA methylation analysis and for increased sensitivity DNA methylation detection. We developed digital bisulfite genomic DNA sequencing to efficiently determine single-basepair DNA methylation patterns on single-molecule DNA templates without an interim cloning step. We also developed digital MethyLight, which surpasses traditional MethyLight in detection sensitivity and quantitative accuracy for low quantities of DNA. Using digital MethyLight, we identified single-molecule, cancer-specific DNA hypermethylation events in the CpG islands of RUNX3, CLDN5 and FOXE1 present in plasma samples from breast cancer patients.


Oncogene | 2006

Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors

Melanie Ehrlich; Christian Woods; Mimi C. Yu; Louis Dubeau; Fan Yang; Mihaela Campan; Daniel J. Weisenberger; Tiffany I. Long; Byungwoo Youn; Emerich Fiala; Peter W. Laird

How hypermethylation and hypomethylation of different parts of the genome in cancer are related to each other and to DNA methyltransferase (DNMT) gene expression is ill defined. We used ovarian epithelial tumors of different malignant potential to look for associations between 5′-gene region or promoter hypermethylation, satellite, or global DNA hypomethylation, and RNA levels for ten DNMT isoforms. In the quantitative MethyLight assay, six of the 55 examined gene loci (LTB4R, MTHFR, CDH13, PGR, CDH1, and IGSF4) were significantly hypermethylated relative to the degree of malignancy (after adjustment for multiple comparisons; P<0.001). Importantly, hypermethylation of these genes was associated with degree of malignancy independently of the association of satellite or global DNA hypomethylation with degree of malignancy. Cancer-related increases in methylation of only two studied genes, LTB4R and MTHFR, which were appreciably methylated even in control tissues, were associated with DNMT1 RNA levels. Cancer-linked satellite DNA hypomethylation was independent of RNA levels for all DNMT3B isoforms, despite the ICF syndrome-linked DNMT3B deficiency causing juxtacentromeric satellite DNA hypomethylation. Our results suggest that there is not a simple association of gene hypermethylation in cancer with altered DNMT RNA levels, and that this hypermethylation is neither the result nor the cause of satellite and global DNA hypomethylation.


PLOS ONE | 2009

Analysis of the Association between CIMP and BRAFV600E in Colorectal Cancer by DNA Methylation Profiling

Toshinori Hinoue; Daniel J. Weisenberger; Fei Pan; Mihaela Campan; Myungjin Kim; Joanne Young; Vicki Whitehall; Barbara A. Leggett; Peter W. Laird

A CpG island methylator phenotype (CIMP) is displayed by a distinct subset of colorectal cancers with a high frequency of DNA hypermethylation in a specific group of CpG islands. Recent studies have shown that an activating mutation of BRAF (BRAFV600E) is tightly associated with CIMP, raising the question of whether BRAFV600E plays a causal role in the development of CIMP or whether CIMP provides a favorable environment for the acquisition of BRAFV600E. We employed Illumina GoldenGate DNA methylation technology, which interrogates 1,505 CpG sites in 807 different genes, to further study this association. We first examined whether expression of BRAFV600E causes DNA hypermethylation by stably expressing BRAFV600E in the CIMP-negative, BRAF wild-type COLO 320DM colorectal cancer cell line. We determined 100 CIMP-associated CpG sites and examined changes in DNA methylation in eight stably transfected clones over multiple passages. We found that BRAFV600E is not sufficient to induce CIMP in our system. Secondly, considering the alternative possibility, we identified genes whose DNA hypermethylation was closely linked to BRAFV600E and CIMP in 235 primary colorectal tumors. Interestingly, genes that showed the most significant link include those that mediate various signaling pathways implicated in colorectal tumorigenesis, such as BMP3 and BMP6 (BMP signaling), EPHA3, KIT, and FLT1 (receptor tyrosine kinases) and SMO (Hedgehog signaling). Furthermore, we identified CIMP-dependent DNA hypermethylation of IGFBP7, which has been shown to mediate BRAFV600E-induced cellular senescence and apoptosis. Promoter DNA hypermethylation of IGFBP7 was associated with silencing of the gene. CIMP-specific inactivation of BRAFV600E-induced senescence and apoptosis pathways by IGFBP7 DNA hypermethylation might create a favorable context for the acquisition of BRAFV600E in CIMP+ colorectal cancer. Our data will be useful for future investigations toward understanding CIMP in colorectal cancer and gaining insights into the role of aberrant DNA hypermethylation in colorectal tumorigenesis.


Molecular Cancer | 2008

Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer

Paul P. Anglim; Janice S. Galler; Michael Koss; Jeffrey A. Hagen; Sally Turla; Mihaela Campan; Daniel J. Weisenberger; Peter W. Laird; Kimberly D. Siegmund; Ite A. Laird-Offringa

BackgroundLung cancer is the leading cause of cancer death in men and women in the United States and Western Europe. Over 160,000 Americans die of this disease every year. The five-year survival rate is 15% – significantly lower than that of other major cancers. Early detection is a key factor in increasing lung cancer patient survival. DNA hypermethylation is recognized as an important mechanism for tumor suppressor gene inactivation in cancer and could yield powerful biomarkers for early detection of lung cancer. Here we focused on developing DNA methylation markers for squamous cell carcinoma of the lung. Using the sensitive, high-throughput DNA methylation analysis technique MethyLight, we examined the methylation profile of 42 loci in a collection of 45 squamous cell lung cancer samples and adjacent non-tumor lung tissues from the same patients.ResultsWe identified 22 loci showing significantly higher DNA methylation levels in tumor tissue than adjacent non-tumor lung. Of these, eight showed highly significant hypermethylation in tumor tissue (p < 0.0001): GDNF, MTHFR, OPCML, TNFRSF25, TCF21, PAX8, PTPRN2 and PITX2. Used in combination on our specimen collection, this eight-locus panel showed 95.6% sensitivity and specificity.ConclusionWe have identified 22 DNA methylation markers for squamous cell lung cancer, several of which have not previously been reported to be methylated in any type of human cancer. The top eight markers show great promise as a sensitive and specific DNA methylation marker panel for squamous cell lung cancer.

Collaboration


Dive into the Mihaela Campan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Weisenberger

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tiffany I. Long

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kimberly D. Siegmund

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ite A. Laird-Offringa

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Sahar Houshdaran

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Brian Chung

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Hui Shen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Louis Dubeau

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge