Miho C. Emoto
Sapporo Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miho C. Emoto.
Free Radical Biology and Medicine | 2015
Akihiro Matsumura; Miho C. Emoto; Syuuichirou Suzuki; Naotoshi Iwahara; Shin Hisahara; Jun Kawamata; Ayano Yamauchi; Hideo Sato-Akaba; Hirotada Fujii; Shun Shimohama
Alzheimer disease (AD) is a neurodegenerative disease clinically characterized by progressive cognitive dysfunction. Deposition of amyloid-β (Aβ) peptides is the most important pathophysiological hallmark of AD. Oxidative stress induced by reactive oxygen species is prominent in AD, and several reports suggest the relationship between a change in redox status and AD pathology containing progressive Aβ deposition, the activation of glial cells, and mitochondrial dysfunction. Therefore, we performed immunohistochemical analysis using a transgenic mouse model of AD (APdE9) and evaluated the activity of superoxide dismutase in brain tissue homogenates of APdE9 mice in vitro. Together with those analyses, in vivo changes in redox status with age in both wild-type (WT) and APdE9 mouse brains were measured noninvasively by three-dimensional electron paramagnetic resonance (EPR) imaging using nitroxide (3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy) as a redox-sensitive probe. Both methods found similar changes in redox status with age, and in particular a significant change in redox status in the hippocampus was observed noninvasively by EPR imaging between APdE9 mice and age-matched WT mice from 9 to 18 months of age. EPR imaging clearly visualized the accelerated change in redox status of APdE9 mouse brain compared with WT. The evaluation of the redox status in the brain of AD model rodents by EPR imaging should be useful for diagnostic study of AD.
Magnetic Resonance Imaging | 2013
Hirotada Fujii; Hideo Sato-Akaba; Miho C. Emoto; Kouichi Itoh; Yasuhiro Ishihara; Hiroshi Hirata
Increased reactive oxygen species (ROS) contribute to numerous brain disorders, and ROS generation has been examined in diverse experimental models of lipopolysaccharide (LPS)-induced inflammation. The in vivo electron paramagnetic resonance (EPR)/nitroxide spin probe method has been used to analyze the redox status in animal models modulated by ROS generation. In this study, a blood-brain barrier (BBB)-permeable nitroxide spin probe, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP), was used as a redox-sensitive nitroxide probe. Magnetic resonance images of mouse head after the injection of HMP showed that HMP was distributed throughout all regions of the mouse head including the brain, suggesting that HMP can reveal redox information in all regions of the mouse head. After the injection of HMP through the mouse tail vein 6 h after the injection of LPS, three-dimensional (3D) EPR images were obtained each minute under a field scanning of 0.3 s and with 81 projections. The reduction reaction of HMP in septic mouse heads was remarkably accelerated compared to that in control mice, and this accelerated reaction was inhibited by aminoguanidine and allopurinol, which inhibit enzymatic activities of induced nitric oxide synthase and xanthine oxidase, respectively. Based on the pharmacokinetics of HMP in mouse heads, the half-life mapping of HMP was performed in LPS-treated mouse head. Half-life maps clearly show a difference in the redox status induced by ROS generation in the presence or absence of inhibitors of ROS-generating enzymes. The present results suggest that a 3D in vivo EPR imaging system combined with BBB-permeable HMP is a useful noninvasive tool for assessing changes in the redox status in rodent models of brain disease under oxidative stress.
Neuroscience Letters | 2013
Miho C. Emoto; Ken-ichi Yamada; Mayumi Yamato; Hirotada Fujii
Nitroxides have recently been used as redox-sensitive contrast agents for both MRI and EPR imaging. However, the rapid in vivo reduction in paramagnetism of nitroxides due to reductants such as ascorbic acid (AsA) has limited their use as contrast agents. This study developed a formulation of a newly synthesized AsA-resistive nitroxide (2,2,6,6-tetraethylpiperidine-4-one-1-oxyl (TEEPONE)) with a lipid emulsion system and examined the in vivo stability of TEEPONE by magnetic resonance imaging (MRI). MRI of mouse heads after administration of TEEPONE clearly indicated that TEEPONE has a remarkable in vivo stability and is a blood-brain barrier (BBB) permeable nitroxide. MRI also showed that TEEPONE is preferentially localized in the mouse brain. The distribution of TEEPONE in the mouse head can be controlled by the lipid content in the emulsion system used to solubilize TEEPONE.
Free Radical Research | 2011
Miho C. Emoto; Fumiya Mito; Toshihide Yamasaki; Ken-ichi Yamada; Hideo Sato-Akaba; Hiroshi Hirata; Hirotada Fujii
Abstract The loss of paramagnetism of nitroxide radicals due to reductant reactions in biological systems, places a fundamental time constraint on their application as an imaging probe in in vivo EPR imaging studies. However, in vitro studies of the newly synthesized tetraethyl-substituted piperidine nitroxide radical demonstrated high resistivity to paramagnetic reduction when exposed to ascorbic acid, a common reduction agent in biological systems. In this work we investigated the use of these nitroxides as an imaging probe in EPR imaging of small rodents. 2,2,6,6-Tetraethyl-piperidine nitroxide (TEEPONE) is not highly soluble in aqueous media, thus a lipid-based emulsion system of lecithin was used to solubilize TEEPONE. The obtained solution was homogenous and with low viscosity, allowing smooth intravenous injection into mice tail vein. Acquired three dimensional (3D) EPR images of mouse head clearly showed TEEPONE distributed in all tissues including brain tissues, with an average measurable signal half-life of more than 80 min, thus demonstrating high resistivity to reduction due to ascorbic acid in in vivo animal studies, and the potential for use of this compound in in vivo studies of animal model systems.
Free Radical Biology and Medicine | 2014
Miho C. Emoto; Hideo Sato-Akaba; Hiroshi Hirata; Hirotada Fujii
Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress.
Free Radical Research | 2015
Miho C. Emoto; Mayumi Yamato; Hideo Sato-Akaba; Ken-ichi Yamada; Yuta Matsuoka; Hirotada Fujii
Methamphetamine (METH)-induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. The aims of the present study conducted in the mouse brain repetitively treated with METH were to (1) examine the redox status using the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethylpiperidine-1-oxyl (MCP) and (2) non-invasively visualize the brain redox status with electron paramagnetic resonance (EPR) imaging. The rate of reduction of MCP was measured from a series of temporal EPR images of mouse heads, and this rate was used to construct a two-dimensional map of rate constants called a “redox map.” The obtained redox map clearly illustrated the change in redox balance in the METH-treated mouse brain that is a known result of oxidative damage. Biochemical assays also showed that the level of thiobarbituric acid-reactive substance, an index of lipid peroxidation, was increased in mouse brains by METH. The enhanced reduction in MCP observed in mouse brains was remarkably suppressed by treatment with the dopamine synthase inhibitor, α-methyl-p-tyrosine, suggesting that enhancement of the reduction reaction of MCP resulted from enzymatic reduction in the mitochondrial respiratory chain. Furthermore, magnetic resonance imaging (MRI) of METH-treated mice using a blood–brain barrier (BBB)-impermeable paramagnetic contrast agent revealed BBB dysfunction after treatment with METH for 7 days. MRI also indicated that the impaired BBB recovered after withdrawal of METH. EPR imaging and MRI are useful tools not only for following changes in the redox status and BBB dysfunction in mouse brains repeatedly administered METH, but also for tracing the drug effect after withdrawal of METH.
Neuroscience Letters | 2015
Miho C. Emoto; Mayumi Yamato; Hideo Sato-Akaba; Ken-ichi Yamada; Hirotada Fujii
Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy.
Magnetic Resonance in Chemistry | 2016
Miho C. Emoto; Shingo Sato; Hirotada Fujii
Theranostic probes provide both therapeutic and diagnostic imaging capabilities in one molecule and show significant promise for use in magnetic resonance imaging (MRI) examinations. The present study describes for the first time the synthesis and utility of nitroxide‐based contrast agents exhibiting a nonsteroidal anti‐inflammatory drug effect. The target theranostic probes were prepared by connecting the carboxyl group of ibuprofen or ketoprofen to the hydroxyl group of 3‐hydroxymethyl‐2,2,5,5‐tetramethylprrolidine‐1‐oxyl by a condensation reaction in the presence of dicyclohexylcarbodiimide and 4‐dimethylaminopyridine in dichloromethane. MRI of mouse heads after administration of either synthesized theranostic probe indicated that the probes enter the brain by passing through the blood–brain barrier (BBB), resulting in T1 contrast enhancement in mouse brain. This enhancement persisted for the duration of the half‐life of about 40 min, which is longer than that obtained by most of pyrrolidine nitroxide molecules. The therapeutic capacities of these theranostic probes were examined using a lipopolysaccharide (LPS)‐induced brain inflammation model. The production of nitric oxide, an inflammation marker in septic mouse brain induced by LPS, was remarkably inhibited by the addition of either synthesized probe, indicating that they also act as anti‐inflammatory drugs. The present results indicate that nitroxide‐based theranostic probes act as both BBB‐permeable redox‐sensitive contrast agents and as an anti‐inflammatory drug in septic mouse brain. Copyright
Journal of Magnetic Resonance | 2013
Ayano Enomoto; Miho C. Emoto; Hirotada Fujii; Hiroshi Hirata
This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.
Journal of Magnetic Resonance | 2017
Hideo Sato-Akaba; Miho C. Emoto; Hiroshi Hirata; Hirotada Fujii
This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouses head was successfully performed.